Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import pandas as pd | |
from collections import defaultdict | |
import gradio as gr | |
import copy as cp | |
import numpy as np | |
from .misc import listinstr | |
# CONSTANTS-URL | |
URL = "http://opencompass.openxlab.space/utils/OpenVLM.json" | |
VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md' | |
# CONSTANTS-CITATION | |
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass, | |
title={OpenCompass: A Universal Evaluation Platform for Foundation Models}, | |
author={OpenCompass Contributors}, | |
howpublished = {\url{https://github.com/open-compass/opencompass}}, | |
year={2023} | |
}""" | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
# CONSTANTS-TEXT | |
LEADERBORAD_INTRODUCTION = """# OpenVLM Leaderboard | |
### Welcome to the OpenVLM Leaderboard! On this leaderboard we share the evaluation results of VLMs obtained by the OpenSource Framework [**VLMEvalKit**](https://github.com/open-compass/VLMEvalKit) π | |
### Currently, OpenVLM Leaderboard covers {} different VLMs (including GPT-4v, Gemini, QwenVLPlus, LLaVA, etc.) and {} different multi-modal benchmarks. | |
This leaderboard was last updated: {}. | |
""" | |
# CONSTANTS-FIELDS | |
META_FIELDS = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified'] | |
MAIN_FIELDS = ['MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench', 'MME', 'SEEDBench_IMG', 'MMVet', 'MMMU_VAL', 'MathVista', 'HallusionBench', 'LLaVABench'] | |
MMBENCH_FIELDS = ['MMBench_TEST_EN', 'MMBench_DEV_EN', 'MMBench_TEST_CN', 'MMBench_DEV_CN', 'CCBench'] | |
MODEL_SIZE = ['<10B', '10B-20B', '20B-40B', '>40B', 'Unknown'] | |
MODEL_TYPE = ['API', 'OpenSource', 'Proprietary'] | |
# The README file for each benchmark | |
LEADERBOARD_MD = {} | |
LEADERBOARD_MD['MAIN'] = """ | |
## Main Evaluation Results | |
- Avg Score: The average score on all VLM Benchmarks (normalized to 0 - 100, the higher the better). | |
- Avg Rank: The average rank on all VLM Benchmarks (the lower the better). | |
- The overall evaluation results on 10 VLM benchmarks, sorted by the ascending order of Avg Rank. | |
""" | |
LEADERBOARD_MD['SEEDBench_IMG'] = """ | |
## SEEDBench_IMG Scores (Prefetch / ChatGPT Answer Extraction / Official Leaderboard) | |
- **Overall**: The overall accuracy across all questions with **ChatGPT answer matching**. | |
- **Overall (prefetch)**: The accuracy when using exact matching for evaluation. | |
- **Overall (official)**: SEEDBench_IMG acc on the official leaderboard (if applicable). | |
""" | |
LEADERBOARD_MD['MMVet'] = """ | |
## MMVet Evaluation Results | |
- In MMVet Evaluation, we use GPT-4-Turbo (gpt-4-1106-preview) as the judge LLM to assign scores to the VLM outputs. We only perform the evaluation once due to the limited variance among results of multiple evaluation pass originally reported. | |
- No specific prompt template adopted for **ALL VLMs**. | |
- We also provide performance on the [**Official Leaderboard**](https://paperswithcode.com/sota/visual-question-answering-on-mm-vet) for models that are applicable. Those results are obtained with GPT-4-0314 evaluator (which has been deperacted for new users). | |
""" | |
LEADERBOARD_MD['MMMU_VAL'] = """ | |
## MMMU Validation Evaluation Results | |
- For MMMU, we support the evaluation of the `dev` (150 samples) and `validation` (900 samples) set. Here we only report the results on the `validation` set. | |
- **Answer Inference:** | |
- For models with `interleave_generate` interface (accept interleaved images & texts as inputs), all testing samples can be inferred. **`interleave_generate` is adopted for inference.** | |
- For models without `interleave_generate` interface, samples with more than one images are skipped (42 out of 1050, directly count as wrong). **`generate` is adopted for inference.** | |
- **Evaluation**: | |
- MMMU include two types of questions: **multi-choice questions** & **open-ended QA**. | |
- For **open-ended QA (62/1050)**, we re-formulate it as multi-choice questions: `{'question': 'QQQ', 'answer': 'AAA'} -> {'question': 'QQQ', 'A': 'AAA', 'B': 'Other Answers', 'answer': 'A'}`, and then adopt the same evaluation paradigm for **multi-choice questions**. | |
- For **multi-choice questions (988/1050)**, we use **GPT-3.5-Turbo-0613** for matching prediction with options if heuristic matching does not work. | |
""" | |
LEADERBOARD_MD['MathVista'] = """ | |
## MMMU TestMini Evaluation Results | |
- We report the evaluation results on MathVista **TestMini**, which include 1000 test samples. | |
- We adopt `GPT-4-Turbo (1106)` as the answer extractor when we failed to extract the answer with heuristic matching. | |
- The performance of **Human (High school)** and **Random Choice** are copied from the official leaderboard. | |
**Category Definitions:** **FQA:** figure QA, **GPS:** geometry problem solving, **MWP:** math word problem, **TQA:** textbook QA, **VQA:** visual QA, **ALG:** algebraic, **ARI:** arithmetic, **GEO:** geometry, **LOG:** logical , **NUM:** numeric, **SCI:** scientific, **STA:** statistical. | |
""" | |
LEADERBOARD_MD['HallusionBench'] = """ | |
[**HallusionBench**](https://github.com/tianyi-lab/HallusionBench) is a benchmark to evaluate hallucination of VLMs. It asks a set of visual questions with one original image and one modified image (the answers for a question can be different, considering the image content). | |
**Examples in HallusionBench:** | |
| Original Figure | Modified Figure | | |
| ------------------------------------------------------------ | ------------------------------------------------------------ | | |
| ![](http://opencompass.openxlab.space/utils/Hallu0.png) | ![](http://opencompass.openxlab.space/utils/Hallu1.png) | | |
| **Q1.** Is the right orange circle the same size as the left orange circle? **A1. Yes** | **Q1.** Is the right orange circle the same size as the left orange circle? **A1. No** | | |
| **Q2.** Is the right orange circle larger than the left orange circle? **A2. No** | **Q2.** Is the right orange circle larger than the left orange circle? **A2. Yes** | | |
| **Q3.** Is the right orange circle smaller than the left orange circle? **A3. No** | **Q3.** Is the right orange circle smaller than the left orange circle? **A3. No** | | |
**Metrics**: | |
>- aAcc: The overall accuracy of **all** atomic questions. | |
> | |
>- qAcc: The mean accuracy of unique **questions**. One question can be asked multiple times with different figures, we consider VLM correctly solved a unique question only if it succeeds in all <question, figure> pairs for this unique question. | |
>- fAcc: The mean accuracy of all **figures**. One figure is associated with multiple questions, we consider VLM correct on a figure only if it succeeds to solve all questions of this figure. | |
**Evaluation Setting**: | |
> 1. **No-visual** Questions (questions asked without the associated figure) in HallusionBench are **skipped** during evaluation. | |
> 2. When we failed to extract Yes / No from the VLM prediction, we adopt **GPT-3.5-Turbo-0613** as the answer extractor. | |
> 3. We report aAcc, qAcc, and fAcc for all evaluated VLMs. | |
## HallusionBench Evaluation Results | |
""" | |
LEADERBOARD_MD['LLaVABench'] = """ | |
## LLaVABench Evaluation Results | |
- In LLaVABench Evaluation, we use GPT-4-Turbo (gpt-4-1106-preview) as the judge LLM to assign scores to the VLM outputs. We only perform the evaluation once due to the limited variance among results of multiple evaluation pass originally reported. | |
- No specific prompt template adopted for **ALL VLMs**. | |
- We also include the official results (obtained by gpt-4-0314) for applicable models. | |
""" | |
from urllib.request import urlopen | |
def load_results(): | |
data = json.loads(urlopen(URL).read()) | |
return data | |
def nth_large(val, vals): | |
return sum([1 for v in vals if v > val]) + 1 | |
def format_timestamp(timestamp): | |
return timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] + ' ' + timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12] | |
def model_size_flag(sz, FIELDS): | |
if pd.isna(sz) and 'Unknown' in FIELDS: | |
return True | |
if pd.isna(sz): | |
return False | |
if '<10B' in FIELDS and sz < 10: | |
return True | |
if '10B-20B' in FIELDS and sz >= 10 and sz < 20: | |
return True | |
if '20B-40B' in FIELDS and sz >= 20 and sz < 40: | |
return True | |
if '>40B' in FIELDS and sz >= 40: | |
return True | |
return False | |
def model_type_flag(line, FIELDS): | |
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': | |
return True | |
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes': | |
return True | |
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No': | |
return True | |
return False | |
def BUILD_L1_DF(results, fields): | |
res = defaultdict(list) | |
for i, m in enumerate(results): | |
item = results[m] | |
meta = item['META'] | |
for k in META_FIELDS: | |
if k == 'Parameters (B)': | |
param = meta['Parameters'] | |
res[k].append(float(param.replace('B', '')) if param != '' else None) | |
elif k == 'Method': | |
name, url = meta['Method'] | |
res[k].append(f'<a href="{url}">{name}</a>') | |
else: | |
res[k].append(meta[k]) | |
scores, ranks = [], [] | |
for d in fields: | |
res[d].append(item[d]['Overall']) | |
if d == 'MME': | |
scores.append(item[d]['Overall'] / 28) | |
else: | |
scores.append(item[d]['Overall']) | |
ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values()])) | |
res['Avg Score'].append(round(np.mean(scores), 1)) | |
res['Avg Rank'].append(round(np.mean(ranks), 2)) | |
df = pd.DataFrame(res) | |
df = df.sort_values('Avg Rank') | |
check_box = {} | |
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model'] | |
check_box['required'] = ['Avg Score', 'Avg Rank'] | |
check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields | |
type_map = defaultdict(lambda: 'number') | |
type_map['Method'] = 'html' | |
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' | |
check_box['type_map'] = type_map | |
return df, check_box | |
def BUILD_L2_DF(results, dataset): | |
res = defaultdict(list) | |
fields = list(list(results.values())[0][dataset].keys()) | |
non_overall_fields = [x for x in fields if 'Overall' not in x] | |
overall_fields = [x for x in fields if 'Overall' in x] | |
if dataset == 'MME': | |
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)] | |
overall_fields = overall_fields + ['Perception', 'Cognition'] | |
for m in results: | |
item = results[m] | |
meta = item['META'] | |
for k in META_FIELDS: | |
if k == 'Parameters (B)': | |
param = meta['Parameters'] | |
res[k].append(float(param.replace('B', '')) if param != '' else None) | |
elif k == 'Method': | |
name, url = meta['Method'] | |
res[k].append(f'<a href="{url}">{name}</a>') | |
else: | |
res[k].append(meta[k]) | |
fields = [x for x in fields] | |
for d in non_overall_fields: | |
res[d].append(item[dataset][d]) | |
for d in overall_fields: | |
res[d].append(item[dataset][d]) | |
df = pd.DataFrame(res) | |
df = df.sort_values('Overall') | |
df = df.iloc[::-1] | |
check_box = {} | |
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model'] | |
check_box['required'] = overall_fields | |
check_box['all'] = non_overall_fields + overall_fields | |
type_map = defaultdict(lambda: 'number') | |
type_map['Method'] = 'html' | |
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' | |
check_box['type_map'] = type_map | |
return df, check_box |