File size: 10,261 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
import torch
from chemical import INIT_CRDS

PARAMS = {
    "DMIN"    : 2.0,
    "DMAX"    : 20.0,
    "DBINS"   : 36,
    "ABINS"   : 36,
}

# ============================================================
def get_pair_dist(a, b):
    """calculate pair distances between two sets of points
    
    Parameters
    ----------
    a,b : pytorch tensors of shape [batch,nres,3]
          store Cartesian coordinates of two sets of atoms
    Returns
    -------
    dist : pytorch tensor of shape [batch,nres,nres]
           stores paitwise distances between atoms in a and b
    """

    dist = torch.cdist(a, b, p=2)
    return dist

# ============================================================
def get_ang(a, b, c):
    """calculate planar angles for all consecutive triples (a[i],b[i],c[i])
    from Cartesian coordinates of three sets of atoms a,b,c 

    Parameters
    ----------
    a,b,c : pytorch tensors of shape [batch,nres,3]
            store Cartesian coordinates of three sets of atoms
    Returns
    -------
    ang : pytorch tensor of shape [batch,nres]
          stores resulting planar angles
    """
    v = a - b
    w = c - b
    v /= torch.norm(v, dim=-1, keepdim=True)
    w /= torch.norm(w, dim=-1, keepdim=True)
    vw = torch.sum(v*w, dim=-1)

    return torch.acos(vw)

# ============================================================
def get_dih(a, b, c, d):
    """calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i])
    given Cartesian coordinates of four sets of atoms a,b,c,d

    Parameters
    ----------
    a,b,c,d : pytorch tensors of shape [batch,nres,3]
              store Cartesian coordinates of four sets of atoms
    Returns
    -------
    dih : pytorch tensor of shape [batch,nres]
          stores resulting dihedrals
    """
    b0 = a - b
    b1 = c - b
    b2 = d - c

    b1 /= torch.norm(b1, dim=-1, keepdim=True)

    v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1
    w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1

    x = torch.sum(v*w, dim=-1)
    y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1)

    return torch.atan2(y, x)


# ============================================================
def xyz_to_c6d(xyz, params=PARAMS):
    """convert cartesian coordinates into 2d distance 
    and orientation maps
    
    Parameters
    ----------
    xyz : pytorch tensor of shape [batch,nres,3,3]
          stores Cartesian coordinates of backbone N,Ca,C atoms
    Returns
    -------
    c6d : pytorch tensor of shape [batch,nres,nres,4]
          stores stacked dist,omega,theta,phi 2D maps 
    """
    
    batch = xyz.shape[0]
    nres = xyz.shape[1]

    # three anchor atoms
    N  = xyz[:,:,0]
    Ca = xyz[:,:,1]
    C  = xyz[:,:,2]

    # recreate Cb given N,Ca,C
    b = Ca - N
    c = C - Ca
    a = torch.cross(b, c, dim=-1)
    Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca    

    # 6d coordinates order: (dist,omega,theta,phi)
    c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device)

    dist = get_pair_dist(Cb,Cb)
    dist[torch.isnan(dist)] = 999.9
    c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...]
    b,i,j = torch.where(c6d[...,0]<params['DMAX'])

    c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j])
    c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j])
    c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j])

    # fix long-range distances
    c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9
    
    mask = torch.zeros((batch, nres,nres), dtype=xyz.dtype, device=xyz.device)
    mask[b,i,j] = 1.0
    return c6d, mask
    
def xyz_to_t2d(xyz_t, params=PARAMS):
    """convert template cartesian coordinates into 2d distance 
    and orientation maps
    
    Parameters
    ----------
    xyz_t : pytorch tensor of shape [batch,templ,nres,3,3]
            stores Cartesian coordinates of template backbone N,Ca,C atoms

    Returns
    -------
    t2d : pytorch tensor of shape [batch,nres,nres,37+6+3]
          stores stacked dist,omega,theta,phi 2D maps 
    """
    B, T, L = xyz_t.shape[:3]
    c6d, mask = xyz_to_c6d(xyz_t[:,:,:,:3].view(B*T,L,3,3), params=params)
    c6d = c6d.view(B, T, L, L, 4)
    mask = mask.view(B, T, L, L, 1)
    #
    # dist to one-hot encoded
    dist = dist_to_onehot(c6d[...,0], params)
    orien = torch.cat((torch.sin(c6d[...,1:]), torch.cos(c6d[...,1:])), dim=-1)*mask # (B, T, L, L, 6)
    #
    mask = ~torch.isnan(c6d[:,:,:,:,0]) # (B, T, L, L)
    t2d = torch.cat((dist, orien, mask.unsqueeze(-1)), dim=-1)
    t2d[torch.isnan(t2d)] = 0.0
    return t2d

def xyz_to_chi1(xyz_t):
    '''convert template cartesian coordinates into chi1 angles

    Parameters
    ----------
    xyz_t: pytorch tensor of shape [batch, templ, nres, 14, 3]
           stores Cartesian coordinates of template atoms. For missing atoms, it should be NaN

    Returns
    -------
    chi1 : pytorch tensor of shape [batch, templ, nres, 2]
           stores cos and sin chi1 angle
    '''
    B, T, L = xyz_t.shape[:3]
    xyz_t = xyz_t.reshape(B*T, L, 14, 3)
        
    # chi1 angle: N, CA, CB, CG
    chi1 = get_dih(xyz_t[:,:,0], xyz_t[:,:,1], xyz_t[:,:,4], xyz_t[:,:,5]) # (B*T, L)
    cos_chi1 = torch.cos(chi1)
    sin_chi1 = torch.sin(chi1)
    mask_chi1 = ~torch.isnan(chi1)
    chi1 = torch.stack((cos_chi1, sin_chi1, mask_chi1), dim=-1) # (B*T, L, 3)
    chi1[torch.isnan(chi1)] = 0.0
    chi1 = chi1.reshape(B, T, L, 3)
    return chi1

def xyz_to_bbtor(xyz, params=PARAMS):
    batch = xyz.shape[0]
    nres = xyz.shape[1]

    # three anchor atoms
    N  = xyz[:,:,0]
    Ca = xyz[:,:,1]
    C  = xyz[:,:,2]

    # recreate Cb given N,Ca,C
    next_N = torch.roll(N, -1, dims=1)
    prev_C = torch.roll(C, 1, dims=1)
    phi = get_dih(prev_C, N, Ca, C)
    psi = get_dih(N, Ca, C, next_N)
    #
    phi[:,0] = 0.0
    psi[:,-1] = 0.0
    #
    astep = 2.0*np.pi / params['ABINS']
    phi_bin = torch.round((phi+np.pi-astep/2)/astep)
    psi_bin = torch.round((psi+np.pi-astep/2)/astep)
    return torch.stack([phi_bin, psi_bin], axis=-1).long()

# ============================================================
def dist_to_onehot(dist, params=PARAMS):
    dist[torch.isnan(dist)] = 999.9
    dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
    dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=dist.dtype,device=dist.device)
    db = torch.bucketize(dist.contiguous(),dbins).long()
    dist = torch.nn.functional.one_hot(db, num_classes=params['DBINS']+1).float()
    return dist

def c6d_to_bins(c6d,params=PARAMS):
    """bin 2d distance and orientation maps
    """

    dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
    astep = 2.0*np.pi / params['ABINS']

    dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device)
    ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device)
    ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device)

    db = torch.bucketize(c6d[...,0].contiguous(),dbins)
    ob = torch.bucketize(c6d[...,1].contiguous(),ab360)
    tb = torch.bucketize(c6d[...,2].contiguous(),ab360)
    pb = torch.bucketize(c6d[...,3].contiguous(),ab180)

    ob[db==params['DBINS']] = params['ABINS']
    tb[db==params['DBINS']] = params['ABINS']
    pb[db==params['DBINS']] = params['ABINS']//2

    return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8)


# ============================================================
def dist_to_bins(dist,params=PARAMS):
    """bin 2d distance maps
    """

    dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
    db = torch.round((dist-params['DMIN']-dstep/2)/dstep)

    db[db<0] = 0
    db[db>params['DBINS']] = params['DBINS']
    
    return db.long()


# ============================================================
def c6d_to_bins2(c6d, same_chain, negative=False, params=PARAMS):
    """bin 2d distance and orientation maps
    """

    dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
    astep = 2.0*np.pi / params['ABINS']

    db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep)
    ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep)
    tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep)
    pb = torch.round((c6d[...,3]-astep/2)/astep)

    # put all d<dmin into one bin
    db[db<0] = 0
    
    # synchronize no-contact bins
    db[db>params['DBINS']] = params['DBINS']
    ob[db==params['DBINS']] = params['ABINS']
    tb[db==params['DBINS']] = params['ABINS']
    pb[db==params['DBINS']] = params['ABINS']//2
    
    if negative:
        db = torch.where(same_chain.bool(), db.long(), params['DBINS'])
        ob = torch.where(same_chain.bool(), ob.long(), params['ABINS'])
        tb = torch.where(same_chain.bool(), tb.long(), params['ABINS'])
        pb = torch.where(same_chain.bool(), pb.long(), params['ABINS']//2)
    
    return torch.stack([db,ob,tb,pb],axis=-1).long()

def get_init_xyz(xyz_t):
    # input: xyz_t (B, T, L, 14, 3)
    # ouput: xyz (B, T, L, 14, 3)
    B, T, L = xyz_t.shape[:3]
    init = INIT_CRDS.to(xyz_t.device).reshape(1,1,1,27,3).repeat(B,T,L,1,1)
    if torch.isnan(xyz_t).all():
        return init

    mask = torch.isnan(xyz_t[:,:,:,:3]).any(dim=-1).any(dim=-1) # (B, T, L)
    #
    center_CA = ((~mask[:,:,:,None]) * torch.nan_to_num(xyz_t[:,:,:,1,:])).sum(dim=2) / ((~mask[:,:,:,None]).sum(dim=2)+1e-4) # (B, T, 3)
    xyz_t = xyz_t - center_CA.view(B,T,1,1,3)
    #
    idx_s = list()
    for i_b in range(B):
        for i_T in range(T):
            if mask[i_b, i_T].all():
                continue
            exist_in_templ = torch.where(~mask[i_b, i_T])[0] # (L_sub)
            seqmap = (torch.arange(L, device=xyz_t.device)[:,None] - exist_in_templ[None,:]).abs() # (L, L_sub)
            seqmap = torch.argmin(seqmap, dim=-1) # (L)
            idx = torch.gather(exist_in_templ, -1, seqmap) # (L)
            offset_CA = torch.gather(xyz_t[i_b, i_T, :, 1, :], 0, idx.reshape(L,1).expand(-1,3))
            init[i_b,i_T] += offset_CA.reshape(L,1,3)
    #
    xyz = torch.where(mask.view(B, T, L, 1, 1), init, xyz_t)
    return xyz