Spaces:
Sleeping
Sleeping
File size: 10,261 Bytes
59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import numpy as np
import torch
from chemical import INIT_CRDS
PARAMS = {
"DMIN" : 2.0,
"DMAX" : 20.0,
"DBINS" : 36,
"ABINS" : 36,
}
# ============================================================
def get_pair_dist(a, b):
"""calculate pair distances between two sets of points
Parameters
----------
a,b : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of two sets of atoms
Returns
-------
dist : pytorch tensor of shape [batch,nres,nres]
stores paitwise distances between atoms in a and b
"""
dist = torch.cdist(a, b, p=2)
return dist
# ============================================================
def get_ang(a, b, c):
"""calculate planar angles for all consecutive triples (a[i],b[i],c[i])
from Cartesian coordinates of three sets of atoms a,b,c
Parameters
----------
a,b,c : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of three sets of atoms
Returns
-------
ang : pytorch tensor of shape [batch,nres]
stores resulting planar angles
"""
v = a - b
w = c - b
v /= torch.norm(v, dim=-1, keepdim=True)
w /= torch.norm(w, dim=-1, keepdim=True)
vw = torch.sum(v*w, dim=-1)
return torch.acos(vw)
# ============================================================
def get_dih(a, b, c, d):
"""calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i])
given Cartesian coordinates of four sets of atoms a,b,c,d
Parameters
----------
a,b,c,d : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of four sets of atoms
Returns
-------
dih : pytorch tensor of shape [batch,nres]
stores resulting dihedrals
"""
b0 = a - b
b1 = c - b
b2 = d - c
b1 /= torch.norm(b1, dim=-1, keepdim=True)
v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1
w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1
x = torch.sum(v*w, dim=-1)
y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1)
return torch.atan2(y, x)
# ============================================================
def xyz_to_c6d(xyz, params=PARAMS):
"""convert cartesian coordinates into 2d distance
and orientation maps
Parameters
----------
xyz : pytorch tensor of shape [batch,nres,3,3]
stores Cartesian coordinates of backbone N,Ca,C atoms
Returns
-------
c6d : pytorch tensor of shape [batch,nres,nres,4]
stores stacked dist,omega,theta,phi 2D maps
"""
batch = xyz.shape[0]
nres = xyz.shape[1]
# three anchor atoms
N = xyz[:,:,0]
Ca = xyz[:,:,1]
C = xyz[:,:,2]
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
# 6d coordinates order: (dist,omega,theta,phi)
c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device)
dist = get_pair_dist(Cb,Cb)
dist[torch.isnan(dist)] = 999.9
c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...]
b,i,j = torch.where(c6d[...,0]<params['DMAX'])
c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j])
c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j])
c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j])
# fix long-range distances
c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9
mask = torch.zeros((batch, nres,nres), dtype=xyz.dtype, device=xyz.device)
mask[b,i,j] = 1.0
return c6d, mask
def xyz_to_t2d(xyz_t, params=PARAMS):
"""convert template cartesian coordinates into 2d distance
and orientation maps
Parameters
----------
xyz_t : pytorch tensor of shape [batch,templ,nres,3,3]
stores Cartesian coordinates of template backbone N,Ca,C atoms
Returns
-------
t2d : pytorch tensor of shape [batch,nres,nres,37+6+3]
stores stacked dist,omega,theta,phi 2D maps
"""
B, T, L = xyz_t.shape[:3]
c6d, mask = xyz_to_c6d(xyz_t[:,:,:,:3].view(B*T,L,3,3), params=params)
c6d = c6d.view(B, T, L, L, 4)
mask = mask.view(B, T, L, L, 1)
#
# dist to one-hot encoded
dist = dist_to_onehot(c6d[...,0], params)
orien = torch.cat((torch.sin(c6d[...,1:]), torch.cos(c6d[...,1:])), dim=-1)*mask # (B, T, L, L, 6)
#
mask = ~torch.isnan(c6d[:,:,:,:,0]) # (B, T, L, L)
t2d = torch.cat((dist, orien, mask.unsqueeze(-1)), dim=-1)
t2d[torch.isnan(t2d)] = 0.0
return t2d
def xyz_to_chi1(xyz_t):
'''convert template cartesian coordinates into chi1 angles
Parameters
----------
xyz_t: pytorch tensor of shape [batch, templ, nres, 14, 3]
stores Cartesian coordinates of template atoms. For missing atoms, it should be NaN
Returns
-------
chi1 : pytorch tensor of shape [batch, templ, nres, 2]
stores cos and sin chi1 angle
'''
B, T, L = xyz_t.shape[:3]
xyz_t = xyz_t.reshape(B*T, L, 14, 3)
# chi1 angle: N, CA, CB, CG
chi1 = get_dih(xyz_t[:,:,0], xyz_t[:,:,1], xyz_t[:,:,4], xyz_t[:,:,5]) # (B*T, L)
cos_chi1 = torch.cos(chi1)
sin_chi1 = torch.sin(chi1)
mask_chi1 = ~torch.isnan(chi1)
chi1 = torch.stack((cos_chi1, sin_chi1, mask_chi1), dim=-1) # (B*T, L, 3)
chi1[torch.isnan(chi1)] = 0.0
chi1 = chi1.reshape(B, T, L, 3)
return chi1
def xyz_to_bbtor(xyz, params=PARAMS):
batch = xyz.shape[0]
nres = xyz.shape[1]
# three anchor atoms
N = xyz[:,:,0]
Ca = xyz[:,:,1]
C = xyz[:,:,2]
# recreate Cb given N,Ca,C
next_N = torch.roll(N, -1, dims=1)
prev_C = torch.roll(C, 1, dims=1)
phi = get_dih(prev_C, N, Ca, C)
psi = get_dih(N, Ca, C, next_N)
#
phi[:,0] = 0.0
psi[:,-1] = 0.0
#
astep = 2.0*np.pi / params['ABINS']
phi_bin = torch.round((phi+np.pi-astep/2)/astep)
psi_bin = torch.round((psi+np.pi-astep/2)/astep)
return torch.stack([phi_bin, psi_bin], axis=-1).long()
# ============================================================
def dist_to_onehot(dist, params=PARAMS):
dist[torch.isnan(dist)] = 999.9
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=dist.dtype,device=dist.device)
db = torch.bucketize(dist.contiguous(),dbins).long()
dist = torch.nn.functional.one_hot(db, num_classes=params['DBINS']+1).float()
return dist
def c6d_to_bins(c6d,params=PARAMS):
"""bin 2d distance and orientation maps
"""
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
astep = 2.0*np.pi / params['ABINS']
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device)
ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device)
ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device)
db = torch.bucketize(c6d[...,0].contiguous(),dbins)
ob = torch.bucketize(c6d[...,1].contiguous(),ab360)
tb = torch.bucketize(c6d[...,2].contiguous(),ab360)
pb = torch.bucketize(c6d[...,3].contiguous(),ab180)
ob[db==params['DBINS']] = params['ABINS']
tb[db==params['DBINS']] = params['ABINS']
pb[db==params['DBINS']] = params['ABINS']//2
return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8)
# ============================================================
def dist_to_bins(dist,params=PARAMS):
"""bin 2d distance maps
"""
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
db = torch.round((dist-params['DMIN']-dstep/2)/dstep)
db[db<0] = 0
db[db>params['DBINS']] = params['DBINS']
return db.long()
# ============================================================
def c6d_to_bins2(c6d, same_chain, negative=False, params=PARAMS):
"""bin 2d distance and orientation maps
"""
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
astep = 2.0*np.pi / params['ABINS']
db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep)
ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep)
tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep)
pb = torch.round((c6d[...,3]-astep/2)/astep)
# put all d<dmin into one bin
db[db<0] = 0
# synchronize no-contact bins
db[db>params['DBINS']] = params['DBINS']
ob[db==params['DBINS']] = params['ABINS']
tb[db==params['DBINS']] = params['ABINS']
pb[db==params['DBINS']] = params['ABINS']//2
if negative:
db = torch.where(same_chain.bool(), db.long(), params['DBINS'])
ob = torch.where(same_chain.bool(), ob.long(), params['ABINS'])
tb = torch.where(same_chain.bool(), tb.long(), params['ABINS'])
pb = torch.where(same_chain.bool(), pb.long(), params['ABINS']//2)
return torch.stack([db,ob,tb,pb],axis=-1).long()
def get_init_xyz(xyz_t):
# input: xyz_t (B, T, L, 14, 3)
# ouput: xyz (B, T, L, 14, 3)
B, T, L = xyz_t.shape[:3]
init = INIT_CRDS.to(xyz_t.device).reshape(1,1,1,27,3).repeat(B,T,L,1,1)
if torch.isnan(xyz_t).all():
return init
mask = torch.isnan(xyz_t[:,:,:,:3]).any(dim=-1).any(dim=-1) # (B, T, L)
#
center_CA = ((~mask[:,:,:,None]) * torch.nan_to_num(xyz_t[:,:,:,1,:])).sum(dim=2) / ((~mask[:,:,:,None]).sum(dim=2)+1e-4) # (B, T, 3)
xyz_t = xyz_t - center_CA.view(B,T,1,1,3)
#
idx_s = list()
for i_b in range(B):
for i_T in range(T):
if mask[i_b, i_T].all():
continue
exist_in_templ = torch.where(~mask[i_b, i_T])[0] # (L_sub)
seqmap = (torch.arange(L, device=xyz_t.device)[:,None] - exist_in_templ[None,:]).abs() # (L, L_sub)
seqmap = torch.argmin(seqmap, dim=-1) # (L)
idx = torch.gather(exist_in_templ, -1, seqmap) # (L)
offset_CA = torch.gather(xyz_t[i_b, i_T, :, 1, :], 0, idx.reshape(L,1).expand(-1,3))
init[i_b,i_T] += offset_CA.reshape(L,1,3)
#
xyz = torch.where(mask.view(B, T, L, 1, 1), init, xyz_t)
return xyz
|