Spaces:
Sleeping
Sleeping
File size: 19,462 Bytes
59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import sys
import numpy as np
import torch
import scipy.sparse
from chemical import *
from scoring import *
def th_ang_v(ab,bc,eps:float=1e-8):
def th_norm(x,eps:float=1e-8):
return x.square().sum(-1,keepdim=True).add(eps).sqrt()
def th_N(x,alpha:float=0):
return x/th_norm(x).add(alpha)
ab, bc = th_N(ab),th_N(bc)
cos_angle = torch.clamp( (ab*bc).sum(-1), -1, 1)
sin_angle = torch.sqrt(1-cos_angle.square() + eps)
dih = torch.stack((cos_angle,sin_angle),-1)
return dih
def th_dih_v(ab,bc,cd):
def th_cross(a,b):
a,b = torch.broadcast_tensors(a,b)
return torch.cross(a,b, dim=-1)
def th_norm(x,eps:float=1e-8):
return x.square().sum(-1,keepdim=True).add(eps).sqrt()
def th_N(x,alpha:float=0):
return x/th_norm(x).add(alpha)
ab, bc, cd = th_N(ab),th_N(bc),th_N(cd)
n1 = th_N( th_cross(ab,bc) )
n2 = th_N( th_cross(bc,cd) )
sin_angle = (th_cross(n1,bc)*n2).sum(-1)
cos_angle = (n1*n2).sum(-1)
dih = torch.stack((cos_angle,sin_angle),-1)
return dih
def th_dih(a,b,c,d):
return th_dih_v(a-b,b-c,c-d)
# More complicated version splits error in CA-N and CA-C (giving more accurate CB position)
# It returns the rigid transformation from local frame to global frame
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8):
#N, Ca, C - [B,L, 3]
#R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix
B,L = N.shape[:2]
v1 = C-Ca
v2 = N-Ca
e1 = v1/(torch.norm(v1, dim=-1, keepdim=True)+eps)
u2 = v2-(torch.einsum('bli, bli -> bl', e1, v2)[...,None]*e1)
e2 = u2/(torch.norm(u2, dim=-1, keepdim=True)+eps)
e3 = torch.cross(e1, e2, dim=-1)
R = torch.cat([e1[...,None], e2[...,None], e3[...,None]], axis=-1) #[B,L,3,3] - rotation matrix
if non_ideal:
v2 = v2/(torch.norm(v2, dim=-1, keepdim=True)+eps)
cosref = torch.sum(e1*v2, dim=-1) # cosine of current N-CA-C bond angle
costgt = cos_ideal_NCAC.item()
cos2del = torch.clamp( cosref*costgt + torch.sqrt((1-cosref*cosref)*(1-costgt*costgt)+eps), min=-1.0, max=1.0 )
cosdel = torch.sqrt(0.5*(1+cos2del)+eps)
sindel = torch.sign(costgt-cosref) * torch.sqrt(1-0.5*(1+cos2del)+eps)
Rp = torch.eye(3, device=N.device).repeat(B,L,1,1)
Rp[:,:,0,0] = cosdel
Rp[:,:,0,1] = -sindel
Rp[:,:,1,0] = sindel
Rp[:,:,1,1] = cosdel
R = torch.einsum('blij,bljk->blik', R,Rp)
return R, Ca
def get_tor_mask(seq, torsion_indices, mask_in=None):
B,L = seq.shape[:2]
tors_mask = torch.ones((B,L,10), dtype=torch.bool, device=seq.device)
tors_mask[...,3:7] = torsion_indices[seq,:,-1] > 0
tors_mask[:,0,1] = False
tors_mask[:,-1,0] = False
# mask for additional angles
tors_mask[:,:,7] = seq!=aa2num['GLY']
tors_mask[:,:,8] = seq!=aa2num['GLY']
tors_mask[:,:,9] = torch.logical_and( seq!=aa2num['GLY'], seq!=aa2num['ALA'] )
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['UNK'] )
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['MAS'] )
if mask_in != None:
# mask for missing atoms
# chis
ti0 = torch.gather(mask_in,2,torsion_indices[seq,:,0])
ti1 = torch.gather(mask_in,2,torsion_indices[seq,:,1])
ti2 = torch.gather(mask_in,2,torsion_indices[seq,:,2])
ti3 = torch.gather(mask_in,2,torsion_indices[seq,:,3])
is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1)
tors_mask[...,3:7] = torch.logical_and(tors_mask[...,3:7], is_valid)
tors_mask[:,:,7] = torch.logical_and(tors_mask[:,:,7], mask_in[:,:,4]) # CB exist?
tors_mask[:,:,8] = torch.logical_and(tors_mask[:,:,8], mask_in[:,:,4]) # CB exist?
tors_mask[:,:,9] = torch.logical_and(tors_mask[:,:,9], mask_in[:,:,5]) # XG exist?
return tors_mask
def get_torsions(xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None):
B,L = xyz_in.shape[:2]
tors_mask = get_tor_mask(seq, torsion_indices, mask_in)
# torsions to restrain to 0 or 180degree
tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device)
tors_planar[:,:,5] = seq == aa2num['TYR'] # TYR chi 3 should be planar
# idealize given xyz coordinates before computing torsion angles
xyz = xyz_in.clone()
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:])
Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device)
Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device)
xyz[...,0,:] = torch.einsum('brij,j->bri', Rs, Nideal) + Ts
xyz[...,2,:] = torch.einsum('brij,j->bri', Rs, Cideal) + Ts
torsions = torch.zeros( (B,L,10,2), device=xyz.device )
# avoid undefined angles for H generation
torsions[:,0,1,0] = 1.0
torsions[:,-1,0,0] = 1.0
# omega
torsions[:,:-1,0,:] = th_dih(xyz[:,:-1,1,:],xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:])
# phi
torsions[:,1:,1,:] = th_dih(xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:],xyz[:,1:,2,:])
# psi
torsions[:,:,2,:] = -1 * th_dih(xyz[:,:,0,:],xyz[:,:,1,:],xyz[:,:,2,:],xyz[:,:,3,:])
# chis
ti0 = torch.gather(xyz,2,torsion_indices[seq,:,0,None].repeat(1,1,1,3))
ti1 = torch.gather(xyz,2,torsion_indices[seq,:,1,None].repeat(1,1,1,3))
ti2 = torch.gather(xyz,2,torsion_indices[seq,:,2,None].repeat(1,1,1,3))
ti3 = torch.gather(xyz,2,torsion_indices[seq,:,3,None].repeat(1,1,1,3))
torsions[:,:,3:7,:] = th_dih(ti0,ti1,ti2,ti3)
# CB bend
NC = 0.5*( xyz[:,:,0,:3] + xyz[:,:,2,:3] )
CA = xyz[:,:,1,:3]
CB = xyz[:,:,4,:3]
t = th_ang_v(CB-CA,NC-CA)
t0 = ref_angles[seq][...,0,:]
torsions[:,:,7,:] = torch.stack(
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
dim=-1 )
# CB twist
NCCA = NC-CA
NCp = xyz[:,:,2,:3] - xyz[:,:,0,:3]
NCpp = NCp - torch.sum(NCp*NCCA, dim=-1, keepdim=True)/ torch.sum(NCCA*NCCA, dim=-1, keepdim=True) * NCCA
t = th_ang_v(CB-CA,NCpp)
t0 = ref_angles[seq][...,1,:]
torsions[:,:,8,:] = torch.stack(
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
dim=-1 )
# CG bend
CG = xyz[:,:,5,:3]
t = th_ang_v(CG-CB,CA-CB)
t0 = ref_angles[seq][...,2,:]
torsions[:,:,9,:] = torch.stack(
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
dim=-1 )
mask0 = torch.isnan(torsions[...,0]).nonzero()
mask1 = torch.isnan(torsions[...,1]).nonzero()
torsions[mask0[:,0],mask0[:,1],mask0[:,2],0] = 1.0
torsions[mask1[:,0],mask1[:,1],mask1[:,2],1] = 0.0
# alt chis
torsions_alt = torsions.clone()
torsions_alt[torsion_can_flip[seq,:]] *= -1
return torsions, torsions_alt, tors_mask, tors_planar
def get_tips(xyz, seq):
B,L = xyz.shape[:2]
xyz_tips = torch.gather(xyz, 2, tip_indices.to(xyz.device)[seq][:,:,None,None].expand(-1,-1,-1,3)).reshape(B, L, 3)
mask = ~(torch.isnan(xyz_tips[:,:,0]))
if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom
# three anchor atoms
N = xyz[:,:,0]
Ca = xyz[:,:,1]
C = xyz[:,:,2]
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips)
return xyz_tips, mask
# process ideal frames
def make_frame(X, Y):
Xn = X / torch.linalg.norm(X)
Y = Y - torch.dot(Y, Xn) * Xn
Yn = Y / torch.linalg.norm(Y)
Z = torch.cross(Xn,Yn)
Zn = Z / torch.linalg.norm(Z)
return torch.stack((Xn,Yn,Zn), dim=-1)
def cross_product_matrix(u):
B, L = u.shape[:2]
matrix = torch.zeros((B, L, 3, 3), device=u.device)
matrix[:,:,0,1] = -u[...,2]
matrix[:,:,0,2] = u[...,1]
matrix[:,:,1,0] = u[...,2]
matrix[:,:,1,2] = -u[...,0]
matrix[:,:,2,0] = -u[...,1]
matrix[:,:,2,1] = u[...,0]
return matrix
# writepdb
def writepdb(filename, atoms, seq, idx_pdb=None, bfacts=None):
f = open(filename,"w")
ctr = 1
scpu = seq.cpu().squeeze()
atomscpu = atoms.cpu().squeeze()
if bfacts is None:
bfacts = torch.zeros(atomscpu.shape[0])
if idx_pdb is None:
idx_pdb = 1 + torch.arange(atomscpu.shape[0])
Bfacts = torch.clamp( bfacts.cpu(), 0, 1)
for i,s in enumerate(scpu):
if (len(atomscpu.shape)==2):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, " CA ", num2aa[s],
"A", idx_pdb[i], atomscpu[i,0], atomscpu[i,1], atomscpu[i,2],
1.0, Bfacts[i] ) )
ctr += 1
elif atomscpu.shape[1]==3:
for j,atm_j in enumerate([" N "," CA "," C "]):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm_j, num2aa[s],
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2],
1.0, Bfacts[i] ) )
ctr += 1
else:
natoms = atomscpu.shape[1]
if (natoms!=14 and natoms!=27):
print ('bad size!', atoms.shape)
assert(False)
atms = aa2long[s]
# his prot hack
if (s==8 and torch.linalg.norm( atomscpu[i,9,:]-atomscpu[i,5,:] ) < 1.7):
atms = (
" N "," CA "," C "," O "," CB "," CG "," NE2"," CD2"," CE1"," ND1",
None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1",
" HD1", None, None, None, None, None, None) # his_d
for j,atm_j in enumerate(atms):
if (j<natoms and atm_j is not None): # and not torch.isnan(atomscpu[i,j,:]).any()):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm_j, num2aa[s],
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2],
1.0, Bfacts[i] ) )
ctr += 1
# resolve tip atom indices
tip_indices = torch.full((22,), 0)
for i in range(22):
tip_atm = aa2tip[i]
atm_long = aa2long[i]
tip_indices[i] = atm_long.index(tip_atm)
# resolve torsion indices
torsion_indices = torch.full((22,4,4),0)
torsion_can_flip = torch.full((22,10),False,dtype=torch.bool)
for i in range(22):
i_l, i_a = aa2long[i], aa2longalt[i]
for j in range(4):
if torsions[i][j] is None:
continue
for k in range(4):
a = torsions[i][j][k]
torsion_indices[i,j,k] = i_l.index(a)
if (i_l.index(a) != i_a.index(a)):
torsion_can_flip[i,3+j] = True ##bb tors never flip
# HIS is a special case
torsion_can_flip[8,4]=False
# build the mapping from atoms in the full rep (Nx27) to the "alternate" rep
allatom_mask = torch.zeros((22,27), dtype=torch.bool)
long2alt = torch.zeros((22,27), dtype=torch.long)
for i in range(22):
i_l, i_lalt = aa2long[i], aa2longalt[i]
for j,a in enumerate(i_l):
if (a is None):
long2alt[i,j] = j
else:
long2alt[i,j] = i_lalt.index(a)
allatom_mask[i,j] = True
# bond graph traversal
num_bonds = torch.zeros((22,27,27), dtype=torch.long)
for i in range(22):
num_bonds_i = np.zeros((27,27))
for (bnamei,bnamej) in aabonds[i]:
bi,bj = aa2long[i].index(bnamei),aa2long[i].index(bnamej)
num_bonds_i[bi,bj] = 1
num_bonds_i = scipy.sparse.csgraph.shortest_path (num_bonds_i,directed=False)
num_bonds_i[num_bonds_i>=4] = 4
num_bonds[i,...] = torch.tensor(num_bonds_i)
# LJ/LK scoring parameters
ljlk_parameters = torch.zeros((22,27,5), dtype=torch.float)
lj_correction_parameters = torch.zeros((22,27,4), dtype=bool) # donor/acceptor/hpol/disulf
for i in range(22):
for j,a in enumerate(aa2type[i]):
if (a is not None):
ljlk_parameters[i,j,:] = torch.tensor( type2ljlk[a] )
lj_correction_parameters[i,j,0] = (type2hb[a]==HbAtom.DO)+(type2hb[a]==HbAtom.DA)
lj_correction_parameters[i,j,1] = (type2hb[a]==HbAtom.AC)+(type2hb[a]==HbAtom.DA)
lj_correction_parameters[i,j,2] = (type2hb[a]==HbAtom.HP)
lj_correction_parameters[i,j,3] = (a=="SH1" or a=="HS")
# hbond scoring parameters
def donorHs(D,bonds,atoms):
dHs = []
for (i,j) in bonds:
if (i==D):
idx_j = atoms.index(j)
if (idx_j>=14): # if atom j is a hydrogen
dHs.append(idx_j)
if (j==D):
idx_i = atoms.index(i)
if (idx_i>=14): # if atom j is a hydrogen
dHs.append(idx_i)
assert (len(dHs)>0)
return dHs
def acceptorBB0(A,hyb,bonds,atoms):
if (hyb == HbHybType.SP2):
for (i,j) in bonds:
if (i==A):
B = atoms.index(j)
if (B<14):
break
if (j==A):
B = atoms.index(i)
if (B<14):
break
for (i,j) in bonds:
if (i==atoms[B]):
B0 = atoms.index(j)
if (B0<14):
break
if (j==atoms[B]):
B0 = atoms.index(i)
if (B0<14):
break
elif (hyb == HbHybType.SP3 or hyb == HbHybType.RING):
for (i,j) in bonds:
if (i==A):
B = atoms.index(j)
if (B<14):
break
if (j==A):
B = atoms.index(i)
if (B<14):
break
for (i,j) in bonds:
if (i==A and j!=atoms[B]):
B0 = atoms.index(j)
break
if (j==A and i!=atoms[B]):
B0 = atoms.index(i)
break
return B,B0
hbtypes = torch.full((22,27,3),-1, dtype=torch.long) # (donortype, acceptortype, acchybtype)
hbbaseatoms = torch.full((22,27,2),-1, dtype=torch.long) # (B,B0) for acc; (D,-1) for don
hbpolys = torch.zeros((HbDonType.NTYPES,HbAccType.NTYPES,3,15)) # weight,xmin,xmax,ymin,ymax,c9,...,c0
for i in range(22):
for j,a in enumerate(aa2type[i]):
if (a in type2dontype):
j_hs = donorHs(aa2long[i][j],aabonds[i],aa2long[i])
for j_h in j_hs:
hbtypes[i,j_h,0] = type2dontype[a]
hbbaseatoms[i,j_h,0] = j
if (a in type2acctype):
j_b, j_b0 = acceptorBB0(aa2long[i][j],type2hybtype[a],aabonds[i],aa2long[i])
hbtypes[i,j,1] = type2acctype[a]
hbtypes[i,j,2] = type2hybtype[a]
hbbaseatoms[i,j,0] = j_b
hbbaseatoms[i,j,1] = j_b0
for i in range(HbDonType.NTYPES):
for j in range(HbAccType.NTYPES):
weight = dontype2wt[i]*acctype2wt[j]
pdist,pbah,pahd = hbtypepair2poly[(i,j)]
xrange,yrange,coeffs = hbpolytype2coeffs[pdist]
hbpolys[i,j,0,0] = weight
hbpolys[i,j,0,1:3] = torch.tensor(xrange)
hbpolys[i,j,0,3:5] = torch.tensor(yrange)
hbpolys[i,j,0,5:] = torch.tensor(coeffs)
xrange,yrange,coeffs = hbpolytype2coeffs[pahd]
hbpolys[i,j,1,0] = weight
hbpolys[i,j,1,1:3] = torch.tensor(xrange)
hbpolys[i,j,1,3:5] = torch.tensor(yrange)
hbpolys[i,j,1,5:] = torch.tensor(coeffs)
xrange,yrange,coeffs = hbpolytype2coeffs[pbah]
hbpolys[i,j,2,0] = weight
hbpolys[i,j,2,1:3] = torch.tensor(xrange)
hbpolys[i,j,2,3:5] = torch.tensor(yrange)
hbpolys[i,j,2,5:] = torch.tensor(coeffs)
# kinematic parameters
base_indices = torch.full((22,27),0, dtype=torch.long)
xyzs_in_base_frame = torch.ones((22,27,4))
RTs_by_torsion = torch.eye(4).repeat(22,7,1,1)
reference_angles = torch.ones((22,3,2))
for i in range(22):
i_l = aa2long[i]
for name, base, coords in ideal_coords[i]:
idx = i_l.index(name)
base_indices[i,idx] = base
xyzs_in_base_frame[i,idx,:3] = torch.tensor(coords)
# omega frame
RTs_by_torsion[i,0,:3,:3] = torch.eye(3)
RTs_by_torsion[i,0,:3,3] = torch.zeros(3)
# phi frame
RTs_by_torsion[i,1,:3,:3] = make_frame(
xyzs_in_base_frame[i,0,:3] - xyzs_in_base_frame[i,1,:3],
torch.tensor([1.,0.,0.])
)
RTs_by_torsion[i,1,:3,3] = xyzs_in_base_frame[i,0,:3]
# psi frame
RTs_by_torsion[i,2,:3,:3] = make_frame(
xyzs_in_base_frame[i,2,:3] - xyzs_in_base_frame[i,1,:3],
xyzs_in_base_frame[i,1,:3] - xyzs_in_base_frame[i,0,:3]
)
RTs_by_torsion[i,2,:3,3] = xyzs_in_base_frame[i,2,:3]
# chi1 frame
if torsions[i][0] is not None:
a0,a1,a2 = torsion_indices[i,0,0:3]
RTs_by_torsion[i,3,:3,:3] = make_frame(
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3],
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3],
)
RTs_by_torsion[i,3,:3,3] = xyzs_in_base_frame[i,a2,:3]
# chi2~4 frame
for j in range(1,4):
if torsions[i][j] is not None:
a2 = torsion_indices[i,j,2]
if ((i==18 and j==2) or (i==8 and j==2)): # TYR CZ-OH & HIS CE1-HE1 a special case
a0,a1 = torsion_indices[i,j,0:2]
RTs_by_torsion[i,3+j,:3,:3] = make_frame(
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3],
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3] )
else:
RTs_by_torsion[i,3+j,:3,:3] = make_frame(
xyzs_in_base_frame[i,a2,:3],
torch.tensor([-1.,0.,0.]), )
RTs_by_torsion[i,3+j,:3,3] = xyzs_in_base_frame[i,a2,:3]
# CB/CG angles
NCr = 0.5*(xyzs_in_base_frame[i,0,:3]+xyzs_in_base_frame[i,2,:3])
CAr = xyzs_in_base_frame[i,1,:3]
CBr = xyzs_in_base_frame[i,4,:3]
CGr = xyzs_in_base_frame[i,5,:3]
reference_angles[i,0,:]=th_ang_v(CBr-CAr,NCr-CAr)
NCp = xyzs_in_base_frame[i,2,:3]-xyzs_in_base_frame[i,0,:3]
NCpp = NCp - torch.dot(NCp,NCr)/ torch.dot(NCr,NCr) * NCr
reference_angles[i,1,:]=th_ang_v(CBr-CAr,NCpp)
reference_angles[i,2,:]=th_ang_v(CGr,torch.tensor([-1.,0.,0.]))
def get_rmsd(a, b, eps=1e-6):
'''
align crds b to a : always use all alphas
expexted tensor of shape (L,3)
jake's torch adapted version
'''
assert a.shape == b.shape, 'make sure tensors are the same size'
L = a.shape[0]
assert a.shape == torch.Size([L,3]), 'make sure tensors are in format [L,3]'
# center to CA centroid
a = a - a.mean(dim=0)
b = b - b.mean(dim=0)
# Computation of the covariance matrix
C = torch.einsum('kj,ji->ki', torch.transpose(b.type(torch.float32),0,1), a.type(torch.float32))
# Compute optimal rotation matrix using SVD
V, S, W = torch.linalg.svd(C)
# get sign to ensure right-handedness
d = torch.ones([3,3])
d[:,-1] = torch.sign(torch.linalg.det(V)*torch.linalg.det(W))
# Rotation matrix U
U = torch.einsum('kj,ji->ki',(d*V),W)
# Rotate xyz_hal
rP = torch.einsum('kj,ji->ki',b.type(torch.float32),U.type(torch.float32))
L = rP.shape[0]
rmsd = torch.sqrt(torch.sum((rP-a)*(rP-a), axis=(0,1)) / L + eps)
return rmsd, U
|