Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 8,005 Bytes
59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
#@title get secondary structure (SSE) from given PDB file
#@markdown So far it seems the best solution is to steal code from biotite
#@markdown which calculates the SSE of a peptide chain based on the P-SEA algorithm (Labesse 1997)
# CODE FROM BIOKITE
# From Krypton
import numpy as np
import random
import torch
def vector_dot(v1,v2):
return (v1*v2).sum(axis=-1)
def norm_vector(v):
factor = np.linalg.norm(v, axis=-1)
if isinstance(factor, np.ndarray):
v /= factor[..., np.newaxis]
else:
v /= factor
return v
def coord(x):
return np.asarray(x)
def displacement(atoms1, atoms2):
v1 = coord(atoms1)
v2 = coord(atoms2)
if len(v1.shape) <= len(v2.shape):
diff = v2 - v1
else:
diff = -(v1 - v2)
return diff
def distance(atoms1, atoms2):
diff = displacement(atoms1, atoms2)
return np.sqrt(vector_dot(diff, diff))
def angle(atoms1, atoms2, atoms3):
v1 = displacement(atoms1, atoms2)
v2 = displacement(atoms3, atoms2)
norm_vector(v1)
norm_vector(v2)
return np.arccos(vector_dot(v1,v2))
def dihedral(atoms1, atoms2, atoms3, atoms4):
v1 = displacement(atoms1, atoms2)
v2 = displacement(atoms2, atoms3)
v3 = displacement(atoms3, atoms4)
norm_vector(v1)
norm_vector(v2)
norm_vector(v3)
n1 = np.cross(v1, v2)
n2 = np.cross(v2, v3)
# Calculation using atan2, to ensure the correct sign of the angle
x = vector_dot(n1,n2)
y = vector_dot(np.cross(n1,n2), v2)
return np.arctan2(y,x)
def replace_letters(arr):
# Create a dictionary that maps the letters 'a', 'b', and 'c' to the corresponding numbers
letter_to_number = {'a': 0, 'b': 1, 'c': 2}
# Create a new array that will hold the numbers
nums = []
# Loop through the input array and replace the letters with the corresponding numbers
for letter in arr:
if letter in letter_to_number:
nums.append(letter_to_number[letter])
else:
nums.append(letter)
return np.array(nums)
def replace_with_mask(arr, percentage, replace_loops=False):
# Make sure the percentage is between 0 and 100
percentage = min(max(percentage, 0), 100)
# Calculate the number of values to replace
num_to_replace = int(len(arr) * percentage / 100)
# Choose a random subset of the array to replace
replace_indices = random.sample(range(len(arr)), num_to_replace)
# Replace the values at the chosen indices with the number 3
for i in replace_indices:
arr[i] = 3
if replace_loops:
for i in arr:
if arr[i] == 2:
arr[i] = 3
return arr
def annotate_sse(ca_coord, percentage_mask=0, replace_loops=False):
_radians_to_angle = 2*np.pi/360
_r_helix = ((89-12)*_radians_to_angle, (89+12)*_radians_to_angle)
_a_helix = ((50-20)*_radians_to_angle, (50+20)*_radians_to_angle)
_d2_helix = ((5.5-0.5), (5.5+0.5))
_d3_helix = ((5.3-0.5), (5.3+0.5))
_d4_helix = ((6.4-0.6), (6.4+0.6))
_r_strand = ((124-14)*_radians_to_angle, (124+14)*_radians_to_angle)
_a_strand = ((-180)*_radians_to_angle, (-125)*_radians_to_angle,
(145)*_radians_to_angle, (180)*_radians_to_angle)
_d2_strand = ((6.7-0.6), (6.7+0.6))
_d3_strand = ((9.9-0.9), (9.9+0.9))
_d4_strand = ((12.4-1.1), (12.4+1.1))
# Filter all CA atoms in the relevant chain.
d2i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
d3i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
d4i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
ri_coord = np.full(( len(ca_coord), 3, 3 ), np.nan)
ai_coord = np.full(( len(ca_coord), 4, 3 ), np.nan)
# The distances and angles are not defined for the entire interval,
# therefore the indices do not have the full range
# Values that are not defined are NaN
for i in range(1, len(ca_coord)-1):
d2i_coord[i] = (ca_coord[i-1], ca_coord[i+1])
for i in range(1, len(ca_coord)-2):
d3i_coord[i] = (ca_coord[i-1], ca_coord[i+2])
for i in range(1, len(ca_coord)-3):
d4i_coord[i] = (ca_coord[i-1], ca_coord[i+3])
for i in range(1, len(ca_coord)-1):
ri_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1])
for i in range(1, len(ca_coord)-2):
ai_coord[i] = (ca_coord[i-1], ca_coord[i],
ca_coord[i+1], ca_coord[i+2])
d2i = distance(d2i_coord[:,0], d2i_coord[:,1])
d3i = distance(d3i_coord[:,0], d3i_coord[:,1])
d4i = distance(d4i_coord[:,0], d4i_coord[:,1])
ri = angle(ri_coord[:,0], ri_coord[:,1], ri_coord[:,2])
ai = dihedral(ai_coord[:,0], ai_coord[:,1],
ai_coord[:,2], ai_coord[:,3])
sse = np.full(len(ca_coord), "c", dtype="U1")
# Annotate helices
# Find CA that meet criteria for potential helices
is_pot_helix = np.zeros(len(sse), dtype=bool)
for i in range(len(sse)):
if (
d3i[i] >= _d3_helix[0] and d3i[i] <= _d3_helix[1]
and d4i[i] >= _d4_helix[0] and d4i[i] <= _d4_helix[1]
) or (
ri[i] >= _r_helix[0] and ri[i] <= _r_helix[1]
and ai[i] >= _a_helix[0] and ai[i] <= _a_helix[1]
):
is_pot_helix[i] = True
# Real helices are 5 consecutive helix elements
is_helix = np.zeros(len(sse), dtype=bool)
counter = 0
for i in range(len(sse)):
if is_pot_helix[i]:
counter += 1
else:
if counter >= 5:
is_helix[i-counter : i] = True
counter = 0
# Extend the helices by one at each end if CA meets extension criteria
i = 0
while i < len(sse):
if is_helix[i]:
sse[i] = "a"
if (
d3i[i-1] >= _d3_helix[0] and d3i[i-1] <= _d3_helix[1]
) or (
ri[i-1] >= _r_helix[0] and ri[i-1] <= _r_helix[1]
):
sse[i-1] = "a"
sse[i] = "a"
if (
d3i[i+1] >= _d3_helix[0] and d3i[i+1] <= _d3_helix[1]
) or (
ri[i+1] >= _r_helix[0] and ri[i+1] <= _r_helix[1]
):
sse[i+1] = "a"
i += 1
# Annotate sheets
# Find CA that meet criteria for potential strands
is_pot_strand = np.zeros(len(sse), dtype=bool)
for i in range(len(sse)):
if ( d2i[i] >= _d2_strand[0] and d2i[i] <= _d2_strand[1]
and d3i[i] >= _d3_strand[0] and d3i[i] <= _d3_strand[1]
and d4i[i] >= _d4_strand[0] and d4i[i] <= _d4_strand[1]
) or (
ri[i] >= _r_strand[0] and ri[i] <= _r_strand[1]
and ( (ai[i] >= _a_strand[0] and ai[i] <= _a_strand[1])
or (ai[i] >= _a_strand[2] and ai[i] <= _a_strand[3]))
):
is_pot_strand[i] = True
# Real strands are 5 consecutive strand elements,
# or shorter fragments of at least 3 consecutive strand residues,
# if they are in hydrogen bond proximity to 5 other residues
pot_strand_coord = ca_coord[is_pot_strand]
is_strand = np.zeros(len(sse), dtype=bool)
counter = 0
contacts = 0
for i in range(len(sse)):
if is_pot_strand[i]:
counter += 1
coord = ca_coord[i]
for strand_coord in ca_coord:
dist = distance(coord, strand_coord)
if dist >= 4.2 and dist <= 5.2:
contacts += 1
else:
if counter >= 4:
is_strand[i-counter : i] = True
elif counter == 3 and contacts >= 5:
is_strand[i-counter : i] = True
counter = 0
contacts = 0
# Extend the strands by one at each end if CA meets extension criteria
i = 0
while i < len(sse):
if is_strand[i]:
sse[i] = "b"
if d3i[i-1] >= _d3_strand[0] and d3i[i-1] <= _d3_strand[1]:
sse[i-1] = "b"
sse[i] = "b"
if d3i[i+1] >= _d3_strand[0] and d3i[i+1] <= _d3_strand[1]:
sse[i+1] = "b"
i += 1
sse=replace_letters(sse)
sse=replace_with_mask(sse, percentage_mask, replace_loops=replace_loops)
sse=torch.nn.functional.one_hot(torch.tensor(sse), num_classes=4)
return sse
|