File size: 50,054 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f8f7e
 
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
#####################################################################
############# PROTEIN SEQUENCE DIFFUSION SAMPLER ####################
#####################################################################

import sys, os, subprocess, pickle, time, json
script_dir = os.path.dirname(os.path.realpath(__file__))
sys.path = sys.path + [script_dir+'/../model/'] + [script_dir+'/']
import shutil
import glob
import torch
import numpy as np
import copy
import json
import matplotlib.pyplot as plt
from torch import nn
import math
import re
import pickle
import pandas as pd
import random
from copy import deepcopy
import time
from collections import namedtuple
import math
from torch.nn.parallel import DistributedDataParallel as DDP
from RoseTTAFoldModel import RoseTTAFoldModule
from util import *
from inpainting_util import *
from kinematics import get_init_xyz, xyz_to_t2d
import parsers_inference as parsers
import diff_utils
import pickle
import pdb
from utils.calc_dssp import annotate_sse
from potentials import POTENTIALS
from diffusion import GaussianDiffusion_SEQDIFF

MODEL_PARAM ={
        "n_extra_block"   : 4,
        "n_main_block"    : 32,
        "n_ref_block"     : 4,
        "d_msa"           : 256,
        "d_msa_full"      : 64,
        "d_pair"          : 128,
        "d_templ"         : 64,
        "n_head_msa"      : 8,
        "n_head_pair"     : 4,
        "n_head_templ"    : 4,
        "d_hidden"        : 32,
        "d_hidden_templ"  : 32,
        "p_drop"       : 0.0
        }

SE3_PARAMS = {
        "num_layers_full"    : 1,
        "num_layers_topk" : 1,
        "num_channels"  : 32,
        "num_degrees"   : 2,
        "l0_in_features_full": 8,
        "l0_in_features_topk" : 64,
        "l0_out_features_full": 8,
        "l0_out_features_topk" : 64,
        "l1_in_features": 3,
        "l1_out_features": 2,
        "num_edge_features_full": 32,
        "num_edge_features_topk": 64,
        "div": 4,
        "n_heads": 4
        }

SE3_param_full = {}
SE3_param_topk = {}

for param, value in SE3_PARAMS.items():
    if "full" in param:
        SE3_param_full[param[:-5]] = value
    elif "topk" in param:
        SE3_param_topk[param[:-5]] = value
    else: # common arguments
        SE3_param_full[param] = value
        SE3_param_topk[param] = value
        
MODEL_PARAM['SE3_param_full'] = SE3_param_full
MODEL_PARAM['SE3_param_topk'] = SE3_param_topk

DEFAULT_CKPT = '/home/jgershon/models/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt' #this is the one with good sequences
LOOP_CHECKPOINT = '/home/jgershon/models/SEQDIFF_221202_AB_NOSTATE_fromBASE_mod30.pt'
t1d_29_CKPT = '/home/jgershon/models/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'

class SEQDIFF_sampler:
    
    '''
        MODULAR SAMPLER FOR SEQUENCE DIFFUSION
        
        - the goal for modularizing this code is to make it as 
          easy as possible to edit and mix functions around 
        
        - in the base implementation here this can handle the standard
          inference mode with default passes through the model, different 
          forms of partial diffusion, and linear symmetry
    
    '''
    
    def __init__(self, args=None):
        '''
            set args and DEVICE as well as other default params
        '''
        self.args = args
        self.DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
        self.conversion = 'ARNDCQEGHILKMFPSTWYVX-'
        self.dssp_dict = {'X':3,'H':0,'E':1,'L':2}
        self.MODEL_PARAM = MODEL_PARAM
        self.SE3_PARAMS = SE3_PARAMS
        self.SE3_param_full = SE3_param_full
        self.SE3_param_topk = SE3_param_topk
        self.use_potentials = False
        self.reset_design_num()
    
    def set_args(self, args):
        '''
            set new arguments if iterating through dictionary of multiple arguments
            
            # NOTE : args pertaining to the model will not be considered as this is
                     used to sample more efficiently without having to reload model for 
                     different sets of args
        '''
        self.args = args
        self.diffuser_init()
        if self.args['potentials'] not in ['', None]:
            self.potential_init()
        
    def reset_design_num(self):
        '''
            reset design num to 0
        '''
        self.design_num = 0
    
    def diffuser_init(self):
        '''
            set up diffuser object of GaussianDiffusion_SEQDIFF
        '''
        self.diffuser = GaussianDiffusion_SEQDIFF(T=self.args['T'],
                schedule=self.args['noise_schedule'],
                sample_distribution=self.args['sample_distribution'],
                sample_distribution_gmm_means=self.args['sample_distribution_gmm_means'],
                sample_distribution_gmm_variances=self.args['sample_distribution_gmm_variances'],
                ) 
        self.betas = self.diffuser.betas
        self.alphas = 1-self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        
    def make_hotspot_features(self):
        '''
            set up hotspot features
        '''
        # initialize hotspot features to all 0s
        self.features['hotspot_feat'] = torch.zeros(self.features['L'])
        
        # if hotspots exist in args then make hotspot features
        if self.args['hotspots'] != None:
            self.features['hotspots'] = [(x[0],int(x[1:])) for x in self.args['hotspots'].split(',')]
            for n,x in enumerate(self.features['mappings']['complex_con_ref_pdb_idx']):
                if x in self.features['hotspots']:
                    self.features['hotspot_feat'][self.features['mappings']['complex_con_hal_idx0'][n]] = 1.0
                    
    def make_dssp_features(self):
        '''
            set up dssp features
        '''
        
        assert not ((self.args['secondary_structure'] != None) and (self.args['dssp_pdb'] != None)), \
               f'You are attempting to provide both dssp_pdb and/or secondary_secondary structure, please choose one or the other'
        
        # initialize with all zeros
        self.features['dssp_feat'] = torch.zeros(self.features['L'],4)
        
        if self.args['secondary_structure'] != None:
            
            self.features['secondary_structure'] = [self.dssp_dict[x.upper()] for x in self.args['secondary_structure']]
            
            assert len(self.features['secondary_structure']*self.features['sym'])+self.features['cap']*2 == self.features['L'], \
                f'You have specified a secondary structure string that does not match your design length'
            
            self.features['dssp_feat'] = torch.nn.functional.one_hot(
                torch.tensor(self.features['cap_dssp']+self.features['secondary_structure']*self.features['sym']+self.features['cap_dssp']),
                num_classes=4)
        
        elif self.args['dssp_pdb'] != None:
            dssp_xyz = torch.from_numpy(parsers.parse_pdb(self.args['dssp_pdb'])['xyz'][:,:,:])
            dssp_pdb = annotate_sse(np.array(dssp_xyz[:,1,:].squeeze()), percentage_mask=0)
            #we assume binder is chain A
            self.features['dssp_feat'][:dssp_pdb.shape[0]] = dssp_pdb
        
        elif (self.args['helix_bias'] + self.args['strand_bias'] + self.args['loop_bias']) > 0.0:

            tmp_mask = torch.rand(self.features['L']) < self.args['helix_bias']
            self.features['dssp_feat'][tmp_mask,0] = 1.0

            tmp_mask = torch.rand(self.features['L']) < self.args['strand_bias']
            self.features['dssp_feat'][tmp_mask,1] = 1.0

            tmp_mask = torch.rand(self.features['L']) < self.args['loop_bias']
            self.features['dssp_feat'][tmp_mask,2] = 1.0
        
        #contigs get mask label
        self.features['dssp_feat'][self.features['mask_str'][0],3] = 1.0
        #anything not labeled gets mask label
        mask_index = torch.where(torch.sum(self.features['dssp_feat'], dim=1) == 0)[0]
        self.features['dssp_feat'][mask_index,3] = 1.0
    
    def model_init(self):
        '''
            get model set up and choose checkpoint
        '''
        
        if self.args['checkpoint'] == None:
            self.args['checkpoint'] = DEFAULT_CKPT

        self.MODEL_PARAM['d_t1d'] = self.args['d_t1d']
        
        # decide based on input args what checkpoint to load
        if self.args['hotspots'] != None or self.args['secondary_structure'] != None \
            or (self.args['helix_bias'] + self.args['strand_bias'] + self.args['loop_bias']) > 0 \
            or self.args['dssp_pdb'] != None and self.args['checkpoint'] == DEFAULT_CKPT:
            
            self.MODEL_PARAM['d_t1d'] = 29
            print('You are using features only compatible with a newer model, switching checkpoint...')
            self.args['checkpoint'] = t1d_29_CKPT
        
        elif self.args['loop_design'] and self.args['checkpoint'] == DEFAULT_CKPT:
            print('Switched to loop design checkpoint')
            self.args['checkpoint'] = LOOP_CHECKPOINT
            
        # check to make sure checkpoint chosen exists
        if not os.path.exists(self.args['checkpoint']):
            print('WARNING: couldn\'t find checkpoint')
            
        self.ckpt = torch.load(self.args['checkpoint'], map_location=self.DEVICE)

        # check to see if [loader_param, model_param, loss_param] is in checkpoint
        #   if so then you are using v2 of inference with t2d bug fixed
        self.v2_mode = False
        if 'model_param' in self.ckpt.keys():
            print('You are running a new v2 model switching into v2 inference mode')
            self.v2_mode = True

            for k in self.MODEL_PARAM.keys():
                if k in self.ckpt['model_param'].keys():
                    self.MODEL_PARAM[k] = self.ckpt['model_param'][k]
                else:
                    print(f'no match for {k} in loaded model params')

        # make model and load checkpoint
        print('Loading model checkpoint...')
        self.model = RoseTTAFoldModule(**self.MODEL_PARAM).to(self.DEVICE)

        model_state = self.ckpt['model_state_dict']
        self.model.load_state_dict(model_state, strict=False)
        self.model.eval()
        print('Successfully loaded model checkpoint')
    
    def feature_init(self):
        '''
            featurize pdb and contigs and choose type of diffusion
        '''
        # initialize features dictionary for all example features
        self.features = {}
        
        # set up params
        self.loader_params = {'MAXCYCLE':self.args['n_cycle'],'TEMPERATURE':self.args['temperature'], 'DISTANCE':self.args['min_decoding_distance']}

        # symmetry
        self.features['sym'] = self.args['symmetry']
        self.features['cap'] = self.args['symmetry_cap']
        self.features['cap_dssp'] = [self.dssp_dict[x.upper()] for x in 'H'*self.features['cap']]
        if self.features['sym'] > 1:
            print(f"Input sequence symmetry {self.features['sym']}")
       
        assert (self.args['contigs'] in [('0'),(0),['0'],[0]] ) ^ (self.args['sequence'] in ['',None]),\
                f'You are specifying contigs ({self.args["contigs"]}) and sequence ({self.args["sequence"]})  (or neither), please specify one or the other'
        
        # initialize trb dictionary
        self.features['trb_d'] = {}
        
        if self.args['pdb'] == None and self.args['sequence'] not in ['', None]:
            print('Preparing sequence input')

            allowable_aas = [x for x in self.conversion[:-1]]
            for x in self.args['sequence']: assert x in allowable_aas, f'Amino Acid {x} is undefinded, please only use standart 20 AAs'
            self.features['seq'] = torch.tensor([self.conversion.index(x) for x in self.args['sequence']])
            self.features['xyz_t'] = torch.full((1,1,len(self.args['sequence']),27,3), np.nan)

            self.features['mask_str'] = torch.zeros(len(self.args['sequence'])).long()[None,:].bool()
            
            #added check for if in partial diffusion mode will mask
            if self.args['sampling_temp'] == 1.0:
                self.features['mask_seq'] = torch.tensor([0 if x == 'X' else 1 for x in self.args['sequence']]).long()[None,:].bool()
            else:
                self.features['mask_seq'] = torch.zeros(len(self.args['sequence'])).long()[None,:].bool()

            self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()

            self.features['idx_pdb'] = torch.tensor([i for i in range(len(self.args['sequence']))])[None,:]
            conf_1d = torch.ones_like(self.features['seq'])
            conf_1d[~self.features['mask_str'][0]] = 0
            self.features['seq_hot'], self.features['msa'], \
                self.features['msa_hot'], self.features['msa_extra_hot'], _ = MSAFeaturize_fixbb(self.features['seq'][None,:],self.loader_params)
            self.features['t1d'] = TemplFeaturizeFixbb(self.features['seq'], conf_1d=conf_1d)[None,None,:]
            self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
            self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
            self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
            self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
        
            self.max_t = int(self.args['T']*self.args['sampling_temp'])
            
            self.features['pdb_idx'] = [('A',i+1) for i in range(len(self.args['sequence']))]
            self.features['trb_d']['inpaint_str'] = self.features['mask_str'][0]
            self.features['trb_d']['inpaint_seq'] = self.features['mask_seq'][0]

        else:
            
            assert not (self.args['pdb'] == None and self.args['sampling_temp'] != 1.0),\
                    f'You must specify a pdb if attempting to use contigs with partial diffusion, else partially diffuse sequence input'
            
            if self.args['pdb'] == None:
                self.features['parsed_pdb'] = {'seq':np.zeros((1),'int64'),
                                                'xyz':np.zeros((1,27,3),'float32'),
                                                'idx':np.zeros((1),'int64'),
                                                'mask':np.zeros((1,27), bool),
                                                'pdb_idx':['A',1]}
            else:
                # parse input pdb
                self.features['parsed_pdb'] = parsers.parse_pdb(self.args['pdb'])
            
            # generate contig map
            self.features['rm'] = ContigMap(self.features['parsed_pdb'], self.args['contigs'], 
                                            self.args['inpaint_seq'], self.args['inpaint_str'], 
                                            self.args['length'], self.args['ref_idx'],
                                            self.args['hal_idx'], self.args['idx_rf'], 
                                            self.args['inpaint_seq_tensor'], self.args['inpaint_str_tensor'])
            self.features['mappings'] = get_mappings(self.features['rm'])

            self.features['pdb_idx'] = self.features['rm'].hal

                ### PREPARE FEATURES DEPENDING ON TYPE OF ARGUMENTS SPECIFIED ###
            
            # FULL DIFFUSION MODE
            if self.args['trb'] == None and self.args['sampling_temp'] == 1.0:
                # process contigs and generate masks
                self.features['mask_str'] = torch.from_numpy(self.features['rm'].inpaint_str)[None,:]
                self.features['mask_seq'] = torch.from_numpy(self.features['rm'].inpaint_seq)[None,:]
                self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()

                seq_input = torch.from_numpy(self.features['parsed_pdb']['seq'])
                xyz_input = torch.from_numpy(self.features['parsed_pdb']['xyz'][:,:,:])

                self.features['xyz_t'] = torch.full((1,1,len(self.features['rm'].ref),27,3), np.nan)
                self.features['xyz_t'][:,:,self.features['rm'].hal_idx0,:14,:] = xyz_input[self.features['rm'].ref_idx0,:14,:][None, None,...]
                self.features['seq'] = torch.full((1,len(self.features['rm'].ref)),20).squeeze()
                self.features['seq'][self.features['rm'].hal_idx0] = seq_input[self.features['rm'].ref_idx0]
                
                # template confidence 
                conf_1d = torch.ones_like(self.features['seq'])*float(self.args['tmpl_conf'])
                conf_1d[~self.features['mask_str'][0]] = 0 # zero confidence for places where structure is masked
                seq_masktok = torch.where(self.features['seq'] == 20, 21, self.features['seq'])

                # Get sequence and MSA input features 
                self.features['seq_hot'], self.features['msa'], \
                    self.features['msa_hot'], self.features['msa_extra_hot'], _ = MSAFeaturize_fixbb(seq_masktok[None,:],self.loader_params)
                self.features['t1d'] = TemplFeaturizeFixbb(self.features['seq'], conf_1d=conf_1d)[None,None,:]
                self.features['idx_pdb'] = torch.from_numpy(np.array(self.features['rm'].rf)).int()[None,:]
                self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
                self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
                self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
                self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)

                self.max_t = int(self.args['T']*self.args['sampling_temp'])
            
            # PARTIAL DIFFUSION MODE, NO INPUT TRB
            elif self.args['trb'] != None:
                print('Running in partial diffusion mode . . .')
                self.features['trb_d'] = np.load(self.args['trb'], allow_pickle=True)
                self.features['mask_str'] = torch.from_numpy(self.features['trb_d']['inpaint_str'])[None,:]
                self.features['mask_seq'] = torch.from_numpy(self.features['trb_d']['inpaint_seq'])[None,:]
                self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()

                self.features['seq'] = torch.from_numpy(self.features['parsed_pdb']['seq'])
                self.features['xyz_t'] = torch.from_numpy(self.features['parsed_pdb']['xyz'][:,:,:])[None,None,...]

                if self.features['mask_seq'].shape[1] == 0:
                    self.features['mask_seq'] = torch.zeros(self.features['seq'].shape[0])[None].bool()
                if self.features['mask_str'].shape[1] == 0:
                    self.features['mask_str'] = torch.zeros(self.features['xyz_t'].shape[2])[None].bool()

                idx_pdb = []
                chains_used = [self.features['parsed_pdb']['pdb_idx'][0][0]]
                idx_jump = 0
                for i,x in enumerate(self.features['parsed_pdb']['pdb_idx']):
                    if x[0] not in chains_used:
                        chains_used.append(x[0])
                        idx_jump += 200
                    idx_pdb.append(idx_jump+i)
                    
                self.features['idx_pdb'] = torch.tensor(idx_pdb)[None,:]
                conf_1d = torch.ones_like(self.features['seq'])
                conf_1d[~self.features['mask_str'][0]] = 0
                self.features['seq_hot'], self.features['msa'], \
                    self.features['msa_hot'], self.features['msa_extra_hot'], _ = MSAFeaturize_fixbb(self.features['seq'][None,:],self.loader_params)
                self.features['t1d'] = TemplFeaturizeFixbb(self.features['seq'], conf_1d=conf_1d)[None,None,:]
                self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
                self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
                self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
                self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
                
                self.max_t = int(self.args['T']*self.args['sampling_temp'])
                
            else:
                print('running in partial diffusion mode, with no trb input, diffusing whole input')
                self.features['seq'] = torch.from_numpy(self.features['parsed_pdb']['seq'])
                self.features['xyz_t'] = torch.from_numpy(self.features['parsed_pdb']['xyz'][:,:,:])[None,None,...]

                if self.args['contigs'] in [('0'),(0),['0'],[0]]:
                    print('no contigs given partially diffusing everything')
                    self.features['mask_str'] = torch.zeros(self.features['xyz_t'].shape[2]).long()[None,:].bool()
                    self.features['mask_seq'] = torch.zeros(self.features['seq'].shape[0]).long()[None,:].bool()
                    self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()
                else:
                    print('found contigs setting up masking for partial diffusion')
                    self.features['mask_str'] = torch.from_numpy(self.features['rm'].inpaint_str)[None,:]
                    self.features['mask_seq'] = torch.from_numpy(self.features['rm'].inpaint_seq)[None,:]
                    self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()

                idx_pdb = []
                chains_used = [self.features['parsed_pdb']['pdb_idx'][0][0]]
                idx_jump = 0
                for i,x in enumerate(self.features['parsed_pdb']['pdb_idx']):
                    if x[0] not in chains_used:
                        chains_used.append(x[0])
                        idx_jump += 200
                    idx_pdb.append(idx_jump+i)

                self.features['idx_pdb'] = torch.tensor(idx_pdb)[none,:]
                conf_1d = torch.ones_like(self.features['seq'])
                conf_1d[~self.features['mask_str'][0]] = 0
                self.features['seq_hot'], self.features['msa'], \
                    self.features['msa_hot'], self.features['msa_extra_hot'], _ = msafeaturize_fixbb(self.features['seq'][none,:],self.loader_params)
                self.features['t1d'] = templfeaturizefixbb(self.features['seq'], conf_1d=conf_1d)[none,none,:]
                self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
                self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
                self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
                self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
            
                self.max_t = int(self.args['t']*self.args['sampling_temp'])
            
        # set L
        self.features['L'] = self.features['seq'].shape[0]
        
    def potential_init(self):
        '''
            initialize potential functions being used and return list of potentails
        '''
        
        potentials = self.args['potentials'].split(',')
        potential_scale = [float(x) for x in self.args['potential_scale'].split(',')]
        assert len(potentials) == len(potential_scale), \
            f'Please make sure number of potentials matches potential scales specified'
        
        self.potential_list = []
        for p,s in zip(potentials, potential_scale):
            assert p in POTENTIALS.keys(), \
                f'The potential specified: {p} , does not match into POTENTIALS dictionary in potentials.py'
            print(f'Using potential: {p}')
            self.potential_list.append(POTENTIALS[p](self.args, self.features, s, self.DEVICE))
        
        self.use_potentials = True
        
    def setup(self, init_model=True):
        '''
            run init model and init features to get everything prepped to go into model
        '''
        
        # initialize features
        self.feature_init()
        
        # initialize potential
        if self.args['potentials'] not in ['', None]:  
            self.potential_init()
        
        # make hostspot features
        self.make_hotspot_features()
        
        # make dssp features
        self.make_dssp_features()
        
        # diffuse sequence and mask features
        self.features['seq'], self.features['msa_masked'], \
        self.features['msa_full'], self.features['xyz_t'], self.features['t1d'], \
        self.features['seq_diffused'] = diff_utils.mask_inputs(self.features['seq_hot'],
                                                               self.features['msa_hot'],
                                                               self.features['msa_extra_hot'],
                                                               self.features['xyz_t'],
                                                               self.features['t1d'],
                                                               input_seq_mask=self.features['mask_seq'],
                                                               input_str_mask=self.features['mask_str'],
                                                               input_t1dconf_mask=self.features['blank_mask'],
                                                               diffuser=self.diffuser,
                                                               t=self.max_t,
                                                               MODEL_PARAM=self.MODEL_PARAM,
                                                               hotspots=self.features['hotspot_feat'],
                                                               dssp=self.features['dssp_feat'],
                                                               v2_mode=self.v2_mode)
        
        
        # move features to device 
        self.features['idx_pdb'] = self.features['idx_pdb'].long().to(self.DEVICE, non_blocking=True) # (B, L)
        self.features['mask_str'] = self.features['mask_str'][None].to(self.DEVICE, non_blocking=True) # (B, L)
        self.features['xyz_t'] = self.features['xyz_t'][None].to(self.DEVICE, non_blocking=True)
        self.features['t1d'] = self.features['t1d'][None].to(self.DEVICE, non_blocking=True)
        self.features['seq'] = self.features['seq'][None].type(torch.float32).to(self.DEVICE, non_blocking=True)
        self.features['msa'] = self.features['msa'].type(torch.float32).to(self.DEVICE, non_blocking=True)
        self.features['msa_masked'] = self.features['msa_masked'][None].type(torch.float32).to(self.DEVICE, non_blocking=True)
        self.features['msa_full'] = self.features['msa_full'][None].type(torch.float32).to(self.DEVICE, non_blocking=True)
        self.ti_dev =  torsion_indices.to(self.DEVICE, non_blocking=True)
        self.ti_flip = torsion_can_flip.to(self.DEVICE, non_blocking=True)
        self.ang_ref = reference_angles.to(self.DEVICE, non_blocking=True)
        self.features['xyz_prev'] = torch.clone(self.features['xyz_t'][0])
        self.features['seq_diffused'] = self.features['seq_diffused'][None].to(self.DEVICE, non_blocking=True)
        self.features['B'], _, self.features['N'], self.features['L'] = self.features['msa'].shape
        self.features['t2d'] = xyz_to_t2d(self.features['xyz_t'])

        # get alphas
        self.features['alpha'], self.features['alpha_t'] = diff_utils.get_alphas(self.features['t1d'], self.features['xyz_t'], 
                                                                                 self.features['B'], self.features['L'], 
                                                                                 self.ti_dev, self.ti_flip, self.ang_ref)

        # processing template coordinates
        self.features['xyz_t'] = get_init_xyz(self.features['xyz_t'])
        self.features['xyz_prev'] = get_init_xyz(self.features['xyz_prev'][:,None]).reshape(self.features['B'], self.features['L'], 27, 3)
        
        # initialize extra features to none
        self.features['xyz'] = None
        self.features['pred_lddt'] = None
        self.features['logit_s'] = None
        self.features['logit_aa_s'] = None
        self.features['best_plddt'] = 0
        self.features['best_pred_lddt'] = torch.zeros_like(self.features['mask_str'])[0].float()
        self.features['msa_prev'] = None
        self.features['pair_prev'] = None
        self.features['state_prev'] = None

        
    def symmetrize_seq(self, x):
        '''
            symmetrize x according sym in features
        '''
        assert (self.features['L']-self.features['cap']*2) % self.features['sym'] == 0, f'symmetry does not match for input length'
        assert x.shape[0] == self.features['L'], f'make sure that dimension 0 of input matches to L'
        
        n_cap = torch.clone(x[:self.features['cap']])
        c_cap = torch.clone(x[-self.features['cap']+1:])
        sym_x = torch.clone(x[self.features['cap']:self.features['sym']]).repeat(self.features['sym'],1)
        
        return torch.cat([n_cap,sym_x,c_cap], dim=0)
        
    def predict_x(self):
        '''
            take step using X_t-1 features to predict Xo
        '''
        self.features['seq'], \
        self.features['xyz'], \
        self.features['pred_lddt'], \
        self.features['logit_s'], \
        self.features['logit_aa_s'], \
        self.features['alpha'], \
        self.features['msa_prev'], \
        self.features['pair_prev'], \
        self.features['state_prev'] \
        = diff_utils.take_step_nostate(self.model,
        self.features['msa_masked'], 
        self.features['msa_full'], 
        self.features['seq'], 
        self.features['t1d'], 
        self.features['t2d'], 
        self.features['idx_pdb'], 
        self.args['n_cycle'],
        self.features['xyz_prev'], 
        self.features['alpha'], 
        self.features['xyz_t'],
        self.features['alpha_t'],
        self.features['seq_diffused'],
        self.features['msa_prev'], 
        self.features['pair_prev'],
        self.features['state_prev'])
    
    def self_condition_seq(self):
        '''
            get previous logits and set at t1d template
        '''
        self.features['t1d'][:,:,:,:21] = self.features['logit_aa_s'][0,:21,:].permute(1,0)

    def self_condition_str_scheduled(self):
        '''
            unmask random fraction of residues according to timestep
        '''
        print('self_conditioning on strcuture')
        xyz_prev_template = torch.clone(self.features['xyz'])[None]
        self_conditioning_mask = torch.rand(self.features['L']) < self.diffuser.alphas_cumprod[t]
        xyz_prev_template[:,:,~self_conditioning_mask] = float('nan')
        xyz_prev_template[:,:,self.features['mask_str'][0][0]] = float('nan')
        xyz_prev_template[:,:,:,3:] = float('nan')
        t2d_sc = xyz_to_t2d(xyz_prev_template)

        xyz_t_sc = torch.zeros_like(self.features['xyz_t'][:,:1])
        xyz_t_sc[:,:,:,:3] = xyz_prev_template[:,:,:,:3]
        xyz_t_sc[:,:,:,3:] = float('nan')

        t1d_sc = torch.clone(self.features['t1d'][:,:1])
        t1d_sc[:,:,~self_conditioning_mask] = 0
        t1d_sc[:,:,mask_str[0][0]] = 0

        self.features['t1d'] = torch.cat([self.features['t1d'][:,:1],t1d_sc], dim=1)
        self.features['t2d'] = torch.cat([self.features['t2d'][:,:1],t2d_sc], dim=1)
        self.features['xyz_t'] = torch.cat([self.features['xyz_t'][:,:1],xyz_t_sc], dim=1)

        self.features['alpha'], self.features['alpha_t'] = diff_utils.get_alphas(self.features['t1d'], self.features['xyz_t'], 
                                                                                 self.features['B'], self.features['L'], 
                                                                                 self.ti_dev, self.ti_flip, self.ang_ref)
        self.features['xyz_t'] = get_init_xyz(self.features['xyz_t'])

    
    def self_condition_str(self):
        '''
            conditioining on strucutre in NAR way
        '''
        print("conditioning on structure for NAR structure noising")
        xyz_t_str_sc           = torch.zeros_like(self.features['xyz_t'][:,:1])
        xyz_t_str_sc[:,:,:,:3] = torch.clone(self.features['xyz'])[None]
        xyz_t_str_sc[:,:,:,3:] = float('nan')
        t2d_str_sc             = xyz_to_t2d(self.features['xyz_t'])
        t1d_str_sc             = torch.clone(self.features['t1d'])

        self.features['xyz_t'] = torch.cat([self.features['xyz_t'],xyz_t_str_sc], dim=1)
        self.features['t2d']   = torch.cat([self.features['t2d'],t2d_str_sc], dim=1)
        self.features['t1d']   = torch.cat([self.features['t1d'],t1d_str_sc], dim=1)
    
    def save_step(self):
        '''
            add step to trajectory dictionary
        '''
        self.trajectory[f'step{self.t}'] = (self.features['xyz'].squeeze().detach().cpu(), 
                                            self.features['logit_aa_s'][0,:21,:].permute(1,0).detach().cpu(), 
                                            self.features['seq_diffused'][0,:,:21].detach().cpu())
    
    def noise_x(self):
        '''
            get X_t-1 from predicted Xo
        '''
        # sample x_t-1
        self.features['post_mean'] = self.diffuser.q_sample(self.features['seq_out'], self.t, DEVICE=self.DEVICE)

        if self.features['sym'] > 1:
            self.features['post_mean'] = self.symmetrize_seq(self.features['post_mean'])

        # update seq and masks
        self.features['seq_diffused'][0,~self.features['mask_seq'][0],:21] = self.features['post_mean'][~self.features['mask_seq'][0],...]
        self.features['seq_diffused'][0,:,21] = 0.0
        
        # did not know we were clamping seq
        self.features['seq_diffused'] = torch.clamp(self.features['seq_diffused'], min=-3, max=3)
        
        # match other features to seq diffused
        self.features['seq'] = torch.argmax(self.features['seq_diffused'], dim=-1)[None]
        self.features['msa_masked'][:,:,:,:,:22] = self.features['seq_diffused']
        self.features['msa_masked'][:,:,:,:,22:44] = self.features['seq_diffused']
        self.features['msa_full'][:,:,:,:,:22] = self.features['seq_diffused']
        self.features['t1d'][:1,:,:,22] = 1-int(self.t)/self.args['T']

        
    def apply_potentials(self):
        '''
            apply potentials
        '''
        
        grads = torch.zeros_like(self.features['seq_out'])
        for p in self.potential_list:
            grads += p.get_gradients(self.features['seq_out'])
        
        self.features['seq_out'] += (grads/len(self.potential_list))
        
    def generate_sample(self):
        '''
            sample from the model 
            
            this function runs the full sampling loop
        '''
        # setup example
        self.setup()
        
        # start time
        self.start_time = time.time()
        
        # set up dictionary to save at each step in trajectory
        self.trajectory = {}
        
        # set out prefix
        self.out_prefix = self.args['out']+f'_{self.design_num:06}'
        print(f'Generating sample {self.design_num:06} ...')
        
        # main sampling loop
        for j in range(self.max_t):
            self.t = torch.tensor(self.max_t-j-1).to(self.DEVICE)
            
            # run features through the model to get X_o prediction
            self.predict_x()
            
            # save step
            if self.args['save_all_steps']:
                self.save_step()
            
            # get seq out
            self.features['seq_out'] = torch.permute(self.features['logit_aa_s'][0], (1,0))
            
            # save best seq
            if self.features['pred_lddt'][~self.features['mask_seq']].mean().item() > self.features['best_plddt']:
                self.features['best_seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
                self.features['best_pred_lddt'] = torch.clone(self.features['pred_lddt'])
                self.features['best_xyz'] = torch.clone(self.features['xyz'])
                self.features['best_plddt'] = self.features['pred_lddt'][~self.features['mask_seq']].mean().item()
            
            # self condition on sequence
            self.self_condition_seq()
            
            # self condition on structure
            if self.args['scheduled_str_cond']:
                self.self_condition_str_scheduled()
            if self.args['struc_cond_sc']:
                self.self_condition_str()
            
            # sequence alterations
            if self.args['softmax_seqout']:
                self.features['seq_out'] = torch.softmax(self.features['seq_out'],dim=-1)*2-1
            if self.args['clamp_seqout']:
                self.features['seq_out'] = torch.clamp(self.features['seq_out'], 
                                                       min=-((1/self.diffuser.alphas_cumprod[t])*0.25+5), 
                                                       max=((1/self.diffuser.alphas_cumprod[t])*0.25+5))
            
            # apply potentials
            if self.use_potentials:
                self.apply_potentials()
            
            # noise to X_t-1
            if self.t != 0:
                self.noise_x()
            
            print(''.join([self.conversion[i] for i in torch.argmax(self.features['seq_out'],dim=-1)]))
            print ("    TIMESTEP [%02d/%02d]   |   current PLDDT: %.4f   <<  >>   best PLDDT: %.4f"%(
                    self.t+1, self.args['T'], self.features['pred_lddt'][~self.features['mask_seq']].mean().item(), 
                    self.features['best_pred_lddt'][~self.features['mask_seq']].mean().item()))
        
        # record time
        self.delta_time = time.time() - self.start_time
        
        # save outputs
        self.save_outputs()
        
        # increment design num
        self.design_num += 1
        
        print(f'Finished design {self.out_prefix} in {self.delta_time/60:.2f} minutes.')
        
    def save_outputs(self):
        '''
            save the outputs from the model
        '''
        # save trajectory
        if self.args['save_all_steps']:
            fname = f'{self.out_prefix}_trajectory.pt'
            torch.save(self.trajecotry, fname)
        
        # get items from best plddt step
        if self.args['save_best_plddt']:
            self.features['seq'] = torch.clone(self.features['best_seq'])
            self.features['pred_lddt'] = torch.clone(self.features['best_pred_lddt'])
            self.features['xyz'] = torch.clone(self.features['best_xyz'])
        
        # get chain IDs
        if (self.args['sampling_temp'] == 1.0 and self.args['trb'] == None) or (self.args['sequence'] not in ['',None]):
            chain_ids = [i[0] for i in self.features['pdb_idx']]
        elif self.args['dump_pdb']:
            chain_ids = [i[0] for i in self.features['parsed_pdb']['pdb_idx']]
        
        # write output pdb
        fname = self.out_prefix + '.pdb'
        if len(self.features['seq'].shape) == 2:
            self.features['seq'] = self.features['seq'].squeeze()
        write_pdb(fname, 
                  self.features['seq'].type(torch.int64), 
                  self.features['xyz'].squeeze(), 
                  Bfacts=self.features['pred_lddt'].squeeze(), 
                  chains=chain_ids)
        
        if self.args['dump_trb']:
            self.save_trb()
        
        if self.args['save_args']:
            self.save_args()

    def save_trb(self):
        '''
            save trb file
        '''
        
        lddt = self.features['pred_lddt'].squeeze().cpu().numpy()
        strmasktemp = self.features['mask_str'].squeeze().cpu().numpy()

        partial_lddt = [lddt[i] for i in range(np.shape(strmasktemp)[0]) if strmasktemp[i] == 0]
        trb = {}
        trb['lddt'] = lddt
        trb['inpaint_lddt'] = partial_lddt
        trb['contigs'] = self.args['contigs']
        trb['device'] = self.DEVICE
        trb['time'] = self.delta_time
        trb['args'] = self.args
        
        if self.args['sequence'] != None:
            for key, value in self.features['trb_d'].items():
                trb[key] = value
        else:
            for key, value in self.features['mappings'].items():
                if key in self.features['trb_d'].keys():
                    trb[key] = self.features['trb_d'][key]
                else:
                    if len(value) > 0:
                        if type(value) == list and type(value[0]) != tuple:
                            value=np.array(value)
                    trb[key] = value
            
        with open(f'{self.out_prefix}.trb','wb') as f_out:
            pickle.dump(trb, f_out)
    
    def save_args(self):
        '''
            save args
        '''

        with open(f'{self.out_prefix}_args.json','w') as f_out:
            json.dump(self.args, f_out)

#####################################################################
###################### science is cool ##############################
#####################################################################


# making a custom sampler class for HuggingFace app

class HuggingFace_sampler(SEQDIFF_sampler):

    def model_init(self):
        '''
            get model set up and choose checkpoint
        '''

        if self.args['checkpoint'] == None:
            self.args['checkpoint'] = DEFAULT_CKPT

        self.MODEL_PARAM['d_t1d'] = self.args['d_t1d']

        # check to make sure checkpoint chosen exists
        if not os.path.exists(self.args['checkpoint']):
            print('WARNING: couldn\'t find checkpoint')

        self.ckpt = torch.load(self.args['checkpoint'], map_location=self.DEVICE)

        # check to see if [loader_param, model_param, loss_param] is in checkpoint
        #   if so then you are using v2 of inference with t2d bug fixed
        self.v2_mode = False
        if 'model_param' in self.ckpt.keys():
            print('You are running a new v2 model switching into v2 inference mode')
            self.v2_mode = True

            for k in self.MODEL_PARAM.keys():
                if k in self.ckpt['model_param'].keys():
                    self.MODEL_PARAM[k] = self.ckpt['model_param'][k]
                else:
                    print(f'no match for {k} in loaded model params')

        # make model and load checkpoint
        print('Loading model checkpoint...')
        self.model = RoseTTAFoldModule(**self.MODEL_PARAM).to(self.DEVICE)

        model_state = self.ckpt['model_state_dict']
        self.model.load_state_dict(model_state, strict=False)
        self.model.eval()
        print('Successfully loaded model checkpoint')

    def generate_sample(self):
        '''
            sample from the model 
            
            this function runs the full sampling loop
        '''
        # setup example
        self.setup()
        
        # start time
        self.start_time = time.time()
        
        # set up dictionary to save at each step in trajectory
        self.trajectory = {}
        
        # set out prefix
        print(f'Generating sample {self.out_prefix} ...')
        
        # main sampling loop
        for j in range(self.max_t):
            self.t = torch.tensor(self.max_t-j-1).to(self.DEVICE)
            
            # run features through the model to get X_o prediction
            self.predict_x()
            
            # save step
            if self.args['save_all_steps']:
                self.save_step()
            
            # get seq out
            self.features['seq_out'] = torch.permute(self.features['logit_aa_s'][0], (1,0))
            
            # save best seq
            if self.features['pred_lddt'].mean().item() > self.features['best_plddt']:
                self.features['best_seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
                self.features['best_pred_lddt'] = torch.clone(self.features['pred_lddt'])
                self.features['best_xyz'] = torch.clone(self.features['xyz'])
                self.features['best_plddt'] = self.features['pred_lddt'][~self.features['mask_seq']].mean().item()
            
            # self condition on sequence
            self.self_condition_seq()
            
            # self condition on structure
            if self.args['scheduled_str_cond']:
                self.self_condition_str_scheduled()
            if self.args['struc_cond_sc']:
                self.self_condition_str()
            
            # sequence alterations
            if self.args['softmax_seqout']:
                self.features['seq_out'] = torch.softmax(self.features['seq_out'],dim=-1)*2-1
            if self.args['clamp_seqout']:
                self.features['seq_out'] = torch.clamp(self.features['seq_out'], 
                                                       min=-((1/self.diffuser.alphas_cumprod[t])*0.25+5), 
                                                       max=((1/self.diffuser.alphas_cumprod[t])*0.25+5))
            
            # apply potentials
            if self.use_potentials:
                self.apply_potentials()
            
            # noise to X_t-1
            if self.t != 0:
                self.noise_x()
            
            print(''.join([self.conversion[i] for i in torch.argmax(self.features['seq_out'],dim=-1)]))
            print ("    TIMESTEP [%02d/%02d]   |   current PLDDT: %.4f   <<  >>   best PLDDT: %.4f"%(
                    self.t+1, self.args['T'], self.features['pred_lddt'][~self.features['mask_seq']].mean().item(), 
                    self.features['best_pred_lddt'][~self.features['mask_seq']].mean().item()))
        
        # record time
        self.delta_time = time.time() - self.start_time
        
        # save outputs
        self.save_outputs()
        
        # increment design num
        self.design_num += 1
        
        print(f'Finished design {self.out_prefix} in {self.delta_time/60:.2f} minutes.')
    
    def take_step_get_outputs(self, j):
        
        self.t = torch.tensor(self.max_t-j-1).to(self.DEVICE)

        # run features through the model to get X_o prediction
        self.predict_x()

        # save step
        if self.args['save_all_steps']:
            self.save_step()

        # get seq out
        self.features['seq_out'] = torch.permute(self.features['logit_aa_s'][0], (1,0))

        # save best seq
        if self.features['pred_lddt'].mean().item() > self.features['best_plddt']:
            self.features['best_seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
            self.features['best_pred_lddt'] = torch.clone(self.features['pred_lddt'])
            self.features['best_xyz'] = torch.clone(self.features['xyz'])
            self.features['best_plddt'] = self.features['pred_lddt'].mean().item()

        
        # WRITE OUTPUT TO GET TEMPORARY PDB TO DISPLAY
        if self.t != 0:
            self.features['seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
        else:
            # prepare final output 
            if self.args['save_args']:
                self.save_args()

            # get items from best plddt step
            if self.args['save_best_plddt']:
                self.features['seq'] = torch.clone(self.features['best_seq'])
                self.features['pred_lddt'] = torch.clone(self.features['best_pred_lddt'])
                self.features['xyz'] = torch.clone(self.features['best_xyz'])

        # get chain IDs
        if (self.args['sampling_temp'] == 1.0 and self.args['trb'] == None) or (self.args['sequence'] not in ['',None]):
            chain_ids = [i[0] for i in self.features['pdb_idx']]
        elif self.args['dump_pdb']:
            chain_ids = [i[0] for i in self.features['parsed_pdb']['pdb_idx']]

        # write output pdb
        if len(self.features['seq'].shape) == 2:
            self.features['seq'] = self.features['seq'].squeeze()
        
        fname = f'{self.out_prefix}.pdb'
        
        write_pdb(fname, self.features['seq'].type(torch.int64),
                  self.features['xyz'].squeeze(),
                  Bfacts=self.features['pred_lddt'].squeeze(),
                  chains=chain_ids)

        aa_seq = ''.join([self.conversion[x] for x in self.features['seq'].tolist()])


        # self condition on sequence
        self.self_condition_seq()

        # self condition on structure
        if self.args['scheduled_str_cond']:
            self.self_condition_str_scheduled()
        if self.args['struc_cond_sc']:
            self.self_condition_str()

        # sequence alterations
        if self.args['softmax_seqout']:
            self.features['seq_out'] = torch.softmax(self.features['seq_out'],dim=-1)*2-1
        if self.args['clamp_seqout']:
            self.features['seq_out'] = torch.clamp(self.features['seq_out'],
                                                   min=-((1/self.diffuser.alphas_cumprod[t])*0.25+5),
                                                   max=((1/self.diffuser.alphas_cumprod[t])*0.25+5))

        # apply potentials
        if self.use_potentials:
            self.apply_potentials()

        # noise to X_t-1
        if self.t != 0:
            self.noise_x()
       
        print(''.join([self.conversion[i] for i in torch.argmax(self.features['seq_out'],dim=-1)]))
        print ("    TIMESTEP [%02d/%02d]   |   current PLDDT: %.4f   <<  >>   best PLDDT: %.4f"%(
                self.t+1, self.args['T'], self.features['pred_lddt'][~self.features['mask_seq']].mean().item(),
                self.features['best_pred_lddt'][~self.features['mask_seq']].mean().item()))
        
                
        return aa_seq, fname, self.features['pred_lddt'].mean().item()

    def get_outputs(self):
        
        aa_seq = ''.join([self.conversion[x] for x in self.features['seq'].tolist()])
        path_to_pdb = self.out_prefix+'.pdb'
        return aa_seq, path_to_pdb, self.features['pred_lddt'].mean().item()