Spaces:
Running
on
L40S
Running
on
L40S
File size: 50,054 Bytes
59a9ccf 29f8f7e 59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 |
#####################################################################
############# PROTEIN SEQUENCE DIFFUSION SAMPLER ####################
#####################################################################
import sys, os, subprocess, pickle, time, json
script_dir = os.path.dirname(os.path.realpath(__file__))
sys.path = sys.path + [script_dir+'/../model/'] + [script_dir+'/']
import shutil
import glob
import torch
import numpy as np
import copy
import json
import matplotlib.pyplot as plt
from torch import nn
import math
import re
import pickle
import pandas as pd
import random
from copy import deepcopy
import time
from collections import namedtuple
import math
from torch.nn.parallel import DistributedDataParallel as DDP
from RoseTTAFoldModel import RoseTTAFoldModule
from util import *
from inpainting_util import *
from kinematics import get_init_xyz, xyz_to_t2d
import parsers_inference as parsers
import diff_utils
import pickle
import pdb
from utils.calc_dssp import annotate_sse
from potentials import POTENTIALS
from diffusion import GaussianDiffusion_SEQDIFF
MODEL_PARAM ={
"n_extra_block" : 4,
"n_main_block" : 32,
"n_ref_block" : 4,
"d_msa" : 256,
"d_msa_full" : 64,
"d_pair" : 128,
"d_templ" : 64,
"n_head_msa" : 8,
"n_head_pair" : 4,
"n_head_templ" : 4,
"d_hidden" : 32,
"d_hidden_templ" : 32,
"p_drop" : 0.0
}
SE3_PARAMS = {
"num_layers_full" : 1,
"num_layers_topk" : 1,
"num_channels" : 32,
"num_degrees" : 2,
"l0_in_features_full": 8,
"l0_in_features_topk" : 64,
"l0_out_features_full": 8,
"l0_out_features_topk" : 64,
"l1_in_features": 3,
"l1_out_features": 2,
"num_edge_features_full": 32,
"num_edge_features_topk": 64,
"div": 4,
"n_heads": 4
}
SE3_param_full = {}
SE3_param_topk = {}
for param, value in SE3_PARAMS.items():
if "full" in param:
SE3_param_full[param[:-5]] = value
elif "topk" in param:
SE3_param_topk[param[:-5]] = value
else: # common arguments
SE3_param_full[param] = value
SE3_param_topk[param] = value
MODEL_PARAM['SE3_param_full'] = SE3_param_full
MODEL_PARAM['SE3_param_topk'] = SE3_param_topk
DEFAULT_CKPT = '/home/jgershon/models/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt' #this is the one with good sequences
LOOP_CHECKPOINT = '/home/jgershon/models/SEQDIFF_221202_AB_NOSTATE_fromBASE_mod30.pt'
t1d_29_CKPT = '/home/jgershon/models/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'
class SEQDIFF_sampler:
'''
MODULAR SAMPLER FOR SEQUENCE DIFFUSION
- the goal for modularizing this code is to make it as
easy as possible to edit and mix functions around
- in the base implementation here this can handle the standard
inference mode with default passes through the model, different
forms of partial diffusion, and linear symmetry
'''
def __init__(self, args=None):
'''
set args and DEVICE as well as other default params
'''
self.args = args
self.DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
self.conversion = 'ARNDCQEGHILKMFPSTWYVX-'
self.dssp_dict = {'X':3,'H':0,'E':1,'L':2}
self.MODEL_PARAM = MODEL_PARAM
self.SE3_PARAMS = SE3_PARAMS
self.SE3_param_full = SE3_param_full
self.SE3_param_topk = SE3_param_topk
self.use_potentials = False
self.reset_design_num()
def set_args(self, args):
'''
set new arguments if iterating through dictionary of multiple arguments
# NOTE : args pertaining to the model will not be considered as this is
used to sample more efficiently without having to reload model for
different sets of args
'''
self.args = args
self.diffuser_init()
if self.args['potentials'] not in ['', None]:
self.potential_init()
def reset_design_num(self):
'''
reset design num to 0
'''
self.design_num = 0
def diffuser_init(self):
'''
set up diffuser object of GaussianDiffusion_SEQDIFF
'''
self.diffuser = GaussianDiffusion_SEQDIFF(T=self.args['T'],
schedule=self.args['noise_schedule'],
sample_distribution=self.args['sample_distribution'],
sample_distribution_gmm_means=self.args['sample_distribution_gmm_means'],
sample_distribution_gmm_variances=self.args['sample_distribution_gmm_variances'],
)
self.betas = self.diffuser.betas
self.alphas = 1-self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
def make_hotspot_features(self):
'''
set up hotspot features
'''
# initialize hotspot features to all 0s
self.features['hotspot_feat'] = torch.zeros(self.features['L'])
# if hotspots exist in args then make hotspot features
if self.args['hotspots'] != None:
self.features['hotspots'] = [(x[0],int(x[1:])) for x in self.args['hotspots'].split(',')]
for n,x in enumerate(self.features['mappings']['complex_con_ref_pdb_idx']):
if x in self.features['hotspots']:
self.features['hotspot_feat'][self.features['mappings']['complex_con_hal_idx0'][n]] = 1.0
def make_dssp_features(self):
'''
set up dssp features
'''
assert not ((self.args['secondary_structure'] != None) and (self.args['dssp_pdb'] != None)), \
f'You are attempting to provide both dssp_pdb and/or secondary_secondary structure, please choose one or the other'
# initialize with all zeros
self.features['dssp_feat'] = torch.zeros(self.features['L'],4)
if self.args['secondary_structure'] != None:
self.features['secondary_structure'] = [self.dssp_dict[x.upper()] for x in self.args['secondary_structure']]
assert len(self.features['secondary_structure']*self.features['sym'])+self.features['cap']*2 == self.features['L'], \
f'You have specified a secondary structure string that does not match your design length'
self.features['dssp_feat'] = torch.nn.functional.one_hot(
torch.tensor(self.features['cap_dssp']+self.features['secondary_structure']*self.features['sym']+self.features['cap_dssp']),
num_classes=4)
elif self.args['dssp_pdb'] != None:
dssp_xyz = torch.from_numpy(parsers.parse_pdb(self.args['dssp_pdb'])['xyz'][:,:,:])
dssp_pdb = annotate_sse(np.array(dssp_xyz[:,1,:].squeeze()), percentage_mask=0)
#we assume binder is chain A
self.features['dssp_feat'][:dssp_pdb.shape[0]] = dssp_pdb
elif (self.args['helix_bias'] + self.args['strand_bias'] + self.args['loop_bias']) > 0.0:
tmp_mask = torch.rand(self.features['L']) < self.args['helix_bias']
self.features['dssp_feat'][tmp_mask,0] = 1.0
tmp_mask = torch.rand(self.features['L']) < self.args['strand_bias']
self.features['dssp_feat'][tmp_mask,1] = 1.0
tmp_mask = torch.rand(self.features['L']) < self.args['loop_bias']
self.features['dssp_feat'][tmp_mask,2] = 1.0
#contigs get mask label
self.features['dssp_feat'][self.features['mask_str'][0],3] = 1.0
#anything not labeled gets mask label
mask_index = torch.where(torch.sum(self.features['dssp_feat'], dim=1) == 0)[0]
self.features['dssp_feat'][mask_index,3] = 1.0
def model_init(self):
'''
get model set up and choose checkpoint
'''
if self.args['checkpoint'] == None:
self.args['checkpoint'] = DEFAULT_CKPT
self.MODEL_PARAM['d_t1d'] = self.args['d_t1d']
# decide based on input args what checkpoint to load
if self.args['hotspots'] != None or self.args['secondary_structure'] != None \
or (self.args['helix_bias'] + self.args['strand_bias'] + self.args['loop_bias']) > 0 \
or self.args['dssp_pdb'] != None and self.args['checkpoint'] == DEFAULT_CKPT:
self.MODEL_PARAM['d_t1d'] = 29
print('You are using features only compatible with a newer model, switching checkpoint...')
self.args['checkpoint'] = t1d_29_CKPT
elif self.args['loop_design'] and self.args['checkpoint'] == DEFAULT_CKPT:
print('Switched to loop design checkpoint')
self.args['checkpoint'] = LOOP_CHECKPOINT
# check to make sure checkpoint chosen exists
if not os.path.exists(self.args['checkpoint']):
print('WARNING: couldn\'t find checkpoint')
self.ckpt = torch.load(self.args['checkpoint'], map_location=self.DEVICE)
# check to see if [loader_param, model_param, loss_param] is in checkpoint
# if so then you are using v2 of inference with t2d bug fixed
self.v2_mode = False
if 'model_param' in self.ckpt.keys():
print('You are running a new v2 model switching into v2 inference mode')
self.v2_mode = True
for k in self.MODEL_PARAM.keys():
if k in self.ckpt['model_param'].keys():
self.MODEL_PARAM[k] = self.ckpt['model_param'][k]
else:
print(f'no match for {k} in loaded model params')
# make model and load checkpoint
print('Loading model checkpoint...')
self.model = RoseTTAFoldModule(**self.MODEL_PARAM).to(self.DEVICE)
model_state = self.ckpt['model_state_dict']
self.model.load_state_dict(model_state, strict=False)
self.model.eval()
print('Successfully loaded model checkpoint')
def feature_init(self):
'''
featurize pdb and contigs and choose type of diffusion
'''
# initialize features dictionary for all example features
self.features = {}
# set up params
self.loader_params = {'MAXCYCLE':self.args['n_cycle'],'TEMPERATURE':self.args['temperature'], 'DISTANCE':self.args['min_decoding_distance']}
# symmetry
self.features['sym'] = self.args['symmetry']
self.features['cap'] = self.args['symmetry_cap']
self.features['cap_dssp'] = [self.dssp_dict[x.upper()] for x in 'H'*self.features['cap']]
if self.features['sym'] > 1:
print(f"Input sequence symmetry {self.features['sym']}")
assert (self.args['contigs'] in [('0'),(0),['0'],[0]] ) ^ (self.args['sequence'] in ['',None]),\
f'You are specifying contigs ({self.args["contigs"]}) and sequence ({self.args["sequence"]}) (or neither), please specify one or the other'
# initialize trb dictionary
self.features['trb_d'] = {}
if self.args['pdb'] == None and self.args['sequence'] not in ['', None]:
print('Preparing sequence input')
allowable_aas = [x for x in self.conversion[:-1]]
for x in self.args['sequence']: assert x in allowable_aas, f'Amino Acid {x} is undefinded, please only use standart 20 AAs'
self.features['seq'] = torch.tensor([self.conversion.index(x) for x in self.args['sequence']])
self.features['xyz_t'] = torch.full((1,1,len(self.args['sequence']),27,3), np.nan)
self.features['mask_str'] = torch.zeros(len(self.args['sequence'])).long()[None,:].bool()
#added check for if in partial diffusion mode will mask
if self.args['sampling_temp'] == 1.0:
self.features['mask_seq'] = torch.tensor([0 if x == 'X' else 1 for x in self.args['sequence']]).long()[None,:].bool()
else:
self.features['mask_seq'] = torch.zeros(len(self.args['sequence'])).long()[None,:].bool()
self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()
self.features['idx_pdb'] = torch.tensor([i for i in range(len(self.args['sequence']))])[None,:]
conf_1d = torch.ones_like(self.features['seq'])
conf_1d[~self.features['mask_str'][0]] = 0
self.features['seq_hot'], self.features['msa'], \
self.features['msa_hot'], self.features['msa_extra_hot'], _ = MSAFeaturize_fixbb(self.features['seq'][None,:],self.loader_params)
self.features['t1d'] = TemplFeaturizeFixbb(self.features['seq'], conf_1d=conf_1d)[None,None,:]
self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
self.max_t = int(self.args['T']*self.args['sampling_temp'])
self.features['pdb_idx'] = [('A',i+1) for i in range(len(self.args['sequence']))]
self.features['trb_d']['inpaint_str'] = self.features['mask_str'][0]
self.features['trb_d']['inpaint_seq'] = self.features['mask_seq'][0]
else:
assert not (self.args['pdb'] == None and self.args['sampling_temp'] != 1.0),\
f'You must specify a pdb if attempting to use contigs with partial diffusion, else partially diffuse sequence input'
if self.args['pdb'] == None:
self.features['parsed_pdb'] = {'seq':np.zeros((1),'int64'),
'xyz':np.zeros((1,27,3),'float32'),
'idx':np.zeros((1),'int64'),
'mask':np.zeros((1,27), bool),
'pdb_idx':['A',1]}
else:
# parse input pdb
self.features['parsed_pdb'] = parsers.parse_pdb(self.args['pdb'])
# generate contig map
self.features['rm'] = ContigMap(self.features['parsed_pdb'], self.args['contigs'],
self.args['inpaint_seq'], self.args['inpaint_str'],
self.args['length'], self.args['ref_idx'],
self.args['hal_idx'], self.args['idx_rf'],
self.args['inpaint_seq_tensor'], self.args['inpaint_str_tensor'])
self.features['mappings'] = get_mappings(self.features['rm'])
self.features['pdb_idx'] = self.features['rm'].hal
### PREPARE FEATURES DEPENDING ON TYPE OF ARGUMENTS SPECIFIED ###
# FULL DIFFUSION MODE
if self.args['trb'] == None and self.args['sampling_temp'] == 1.0:
# process contigs and generate masks
self.features['mask_str'] = torch.from_numpy(self.features['rm'].inpaint_str)[None,:]
self.features['mask_seq'] = torch.from_numpy(self.features['rm'].inpaint_seq)[None,:]
self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()
seq_input = torch.from_numpy(self.features['parsed_pdb']['seq'])
xyz_input = torch.from_numpy(self.features['parsed_pdb']['xyz'][:,:,:])
self.features['xyz_t'] = torch.full((1,1,len(self.features['rm'].ref),27,3), np.nan)
self.features['xyz_t'][:,:,self.features['rm'].hal_idx0,:14,:] = xyz_input[self.features['rm'].ref_idx0,:14,:][None, None,...]
self.features['seq'] = torch.full((1,len(self.features['rm'].ref)),20).squeeze()
self.features['seq'][self.features['rm'].hal_idx0] = seq_input[self.features['rm'].ref_idx0]
# template confidence
conf_1d = torch.ones_like(self.features['seq'])*float(self.args['tmpl_conf'])
conf_1d[~self.features['mask_str'][0]] = 0 # zero confidence for places where structure is masked
seq_masktok = torch.where(self.features['seq'] == 20, 21, self.features['seq'])
# Get sequence and MSA input features
self.features['seq_hot'], self.features['msa'], \
self.features['msa_hot'], self.features['msa_extra_hot'], _ = MSAFeaturize_fixbb(seq_masktok[None,:],self.loader_params)
self.features['t1d'] = TemplFeaturizeFixbb(self.features['seq'], conf_1d=conf_1d)[None,None,:]
self.features['idx_pdb'] = torch.from_numpy(np.array(self.features['rm'].rf)).int()[None,:]
self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
self.max_t = int(self.args['T']*self.args['sampling_temp'])
# PARTIAL DIFFUSION MODE, NO INPUT TRB
elif self.args['trb'] != None:
print('Running in partial diffusion mode . . .')
self.features['trb_d'] = np.load(self.args['trb'], allow_pickle=True)
self.features['mask_str'] = torch.from_numpy(self.features['trb_d']['inpaint_str'])[None,:]
self.features['mask_seq'] = torch.from_numpy(self.features['trb_d']['inpaint_seq'])[None,:]
self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()
self.features['seq'] = torch.from_numpy(self.features['parsed_pdb']['seq'])
self.features['xyz_t'] = torch.from_numpy(self.features['parsed_pdb']['xyz'][:,:,:])[None,None,...]
if self.features['mask_seq'].shape[1] == 0:
self.features['mask_seq'] = torch.zeros(self.features['seq'].shape[0])[None].bool()
if self.features['mask_str'].shape[1] == 0:
self.features['mask_str'] = torch.zeros(self.features['xyz_t'].shape[2])[None].bool()
idx_pdb = []
chains_used = [self.features['parsed_pdb']['pdb_idx'][0][0]]
idx_jump = 0
for i,x in enumerate(self.features['parsed_pdb']['pdb_idx']):
if x[0] not in chains_used:
chains_used.append(x[0])
idx_jump += 200
idx_pdb.append(idx_jump+i)
self.features['idx_pdb'] = torch.tensor(idx_pdb)[None,:]
conf_1d = torch.ones_like(self.features['seq'])
conf_1d[~self.features['mask_str'][0]] = 0
self.features['seq_hot'], self.features['msa'], \
self.features['msa_hot'], self.features['msa_extra_hot'], _ = MSAFeaturize_fixbb(self.features['seq'][None,:],self.loader_params)
self.features['t1d'] = TemplFeaturizeFixbb(self.features['seq'], conf_1d=conf_1d)[None,None,:]
self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
self.max_t = int(self.args['T']*self.args['sampling_temp'])
else:
print('running in partial diffusion mode, with no trb input, diffusing whole input')
self.features['seq'] = torch.from_numpy(self.features['parsed_pdb']['seq'])
self.features['xyz_t'] = torch.from_numpy(self.features['parsed_pdb']['xyz'][:,:,:])[None,None,...]
if self.args['contigs'] in [('0'),(0),['0'],[0]]:
print('no contigs given partially diffusing everything')
self.features['mask_str'] = torch.zeros(self.features['xyz_t'].shape[2]).long()[None,:].bool()
self.features['mask_seq'] = torch.zeros(self.features['seq'].shape[0]).long()[None,:].bool()
self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()
else:
print('found contigs setting up masking for partial diffusion')
self.features['mask_str'] = torch.from_numpy(self.features['rm'].inpaint_str)[None,:]
self.features['mask_seq'] = torch.from_numpy(self.features['rm'].inpaint_seq)[None,:]
self.features['blank_mask'] = torch.ones(self.features['mask_str'].size()[-1])[None,:].bool()
idx_pdb = []
chains_used = [self.features['parsed_pdb']['pdb_idx'][0][0]]
idx_jump = 0
for i,x in enumerate(self.features['parsed_pdb']['pdb_idx']):
if x[0] not in chains_used:
chains_used.append(x[0])
idx_jump += 200
idx_pdb.append(idx_jump+i)
self.features['idx_pdb'] = torch.tensor(idx_pdb)[none,:]
conf_1d = torch.ones_like(self.features['seq'])
conf_1d[~self.features['mask_str'][0]] = 0
self.features['seq_hot'], self.features['msa'], \
self.features['msa_hot'], self.features['msa_extra_hot'], _ = msafeaturize_fixbb(self.features['seq'][none,:],self.loader_params)
self.features['t1d'] = templfeaturizefixbb(self.features['seq'], conf_1d=conf_1d)[none,none,:]
self.features['seq_hot'] = self.features['seq_hot'].unsqueeze(dim=0)
self.features['msa'] = self.features['msa'].unsqueeze(dim=0)
self.features['msa_hot'] = self.features['msa_hot'].unsqueeze(dim=0)
self.features['msa_extra_hot'] = self.features['msa_extra_hot'].unsqueeze(dim=0)
self.max_t = int(self.args['t']*self.args['sampling_temp'])
# set L
self.features['L'] = self.features['seq'].shape[0]
def potential_init(self):
'''
initialize potential functions being used and return list of potentails
'''
potentials = self.args['potentials'].split(',')
potential_scale = [float(x) for x in self.args['potential_scale'].split(',')]
assert len(potentials) == len(potential_scale), \
f'Please make sure number of potentials matches potential scales specified'
self.potential_list = []
for p,s in zip(potentials, potential_scale):
assert p in POTENTIALS.keys(), \
f'The potential specified: {p} , does not match into POTENTIALS dictionary in potentials.py'
print(f'Using potential: {p}')
self.potential_list.append(POTENTIALS[p](self.args, self.features, s, self.DEVICE))
self.use_potentials = True
def setup(self, init_model=True):
'''
run init model and init features to get everything prepped to go into model
'''
# initialize features
self.feature_init()
# initialize potential
if self.args['potentials'] not in ['', None]:
self.potential_init()
# make hostspot features
self.make_hotspot_features()
# make dssp features
self.make_dssp_features()
# diffuse sequence and mask features
self.features['seq'], self.features['msa_masked'], \
self.features['msa_full'], self.features['xyz_t'], self.features['t1d'], \
self.features['seq_diffused'] = diff_utils.mask_inputs(self.features['seq_hot'],
self.features['msa_hot'],
self.features['msa_extra_hot'],
self.features['xyz_t'],
self.features['t1d'],
input_seq_mask=self.features['mask_seq'],
input_str_mask=self.features['mask_str'],
input_t1dconf_mask=self.features['blank_mask'],
diffuser=self.diffuser,
t=self.max_t,
MODEL_PARAM=self.MODEL_PARAM,
hotspots=self.features['hotspot_feat'],
dssp=self.features['dssp_feat'],
v2_mode=self.v2_mode)
# move features to device
self.features['idx_pdb'] = self.features['idx_pdb'].long().to(self.DEVICE, non_blocking=True) # (B, L)
self.features['mask_str'] = self.features['mask_str'][None].to(self.DEVICE, non_blocking=True) # (B, L)
self.features['xyz_t'] = self.features['xyz_t'][None].to(self.DEVICE, non_blocking=True)
self.features['t1d'] = self.features['t1d'][None].to(self.DEVICE, non_blocking=True)
self.features['seq'] = self.features['seq'][None].type(torch.float32).to(self.DEVICE, non_blocking=True)
self.features['msa'] = self.features['msa'].type(torch.float32).to(self.DEVICE, non_blocking=True)
self.features['msa_masked'] = self.features['msa_masked'][None].type(torch.float32).to(self.DEVICE, non_blocking=True)
self.features['msa_full'] = self.features['msa_full'][None].type(torch.float32).to(self.DEVICE, non_blocking=True)
self.ti_dev = torsion_indices.to(self.DEVICE, non_blocking=True)
self.ti_flip = torsion_can_flip.to(self.DEVICE, non_blocking=True)
self.ang_ref = reference_angles.to(self.DEVICE, non_blocking=True)
self.features['xyz_prev'] = torch.clone(self.features['xyz_t'][0])
self.features['seq_diffused'] = self.features['seq_diffused'][None].to(self.DEVICE, non_blocking=True)
self.features['B'], _, self.features['N'], self.features['L'] = self.features['msa'].shape
self.features['t2d'] = xyz_to_t2d(self.features['xyz_t'])
# get alphas
self.features['alpha'], self.features['alpha_t'] = diff_utils.get_alphas(self.features['t1d'], self.features['xyz_t'],
self.features['B'], self.features['L'],
self.ti_dev, self.ti_flip, self.ang_ref)
# processing template coordinates
self.features['xyz_t'] = get_init_xyz(self.features['xyz_t'])
self.features['xyz_prev'] = get_init_xyz(self.features['xyz_prev'][:,None]).reshape(self.features['B'], self.features['L'], 27, 3)
# initialize extra features to none
self.features['xyz'] = None
self.features['pred_lddt'] = None
self.features['logit_s'] = None
self.features['logit_aa_s'] = None
self.features['best_plddt'] = 0
self.features['best_pred_lddt'] = torch.zeros_like(self.features['mask_str'])[0].float()
self.features['msa_prev'] = None
self.features['pair_prev'] = None
self.features['state_prev'] = None
def symmetrize_seq(self, x):
'''
symmetrize x according sym in features
'''
assert (self.features['L']-self.features['cap']*2) % self.features['sym'] == 0, f'symmetry does not match for input length'
assert x.shape[0] == self.features['L'], f'make sure that dimension 0 of input matches to L'
n_cap = torch.clone(x[:self.features['cap']])
c_cap = torch.clone(x[-self.features['cap']+1:])
sym_x = torch.clone(x[self.features['cap']:self.features['sym']]).repeat(self.features['sym'],1)
return torch.cat([n_cap,sym_x,c_cap], dim=0)
def predict_x(self):
'''
take step using X_t-1 features to predict Xo
'''
self.features['seq'], \
self.features['xyz'], \
self.features['pred_lddt'], \
self.features['logit_s'], \
self.features['logit_aa_s'], \
self.features['alpha'], \
self.features['msa_prev'], \
self.features['pair_prev'], \
self.features['state_prev'] \
= diff_utils.take_step_nostate(self.model,
self.features['msa_masked'],
self.features['msa_full'],
self.features['seq'],
self.features['t1d'],
self.features['t2d'],
self.features['idx_pdb'],
self.args['n_cycle'],
self.features['xyz_prev'],
self.features['alpha'],
self.features['xyz_t'],
self.features['alpha_t'],
self.features['seq_diffused'],
self.features['msa_prev'],
self.features['pair_prev'],
self.features['state_prev'])
def self_condition_seq(self):
'''
get previous logits and set at t1d template
'''
self.features['t1d'][:,:,:,:21] = self.features['logit_aa_s'][0,:21,:].permute(1,0)
def self_condition_str_scheduled(self):
'''
unmask random fraction of residues according to timestep
'''
print('self_conditioning on strcuture')
xyz_prev_template = torch.clone(self.features['xyz'])[None]
self_conditioning_mask = torch.rand(self.features['L']) < self.diffuser.alphas_cumprod[t]
xyz_prev_template[:,:,~self_conditioning_mask] = float('nan')
xyz_prev_template[:,:,self.features['mask_str'][0][0]] = float('nan')
xyz_prev_template[:,:,:,3:] = float('nan')
t2d_sc = xyz_to_t2d(xyz_prev_template)
xyz_t_sc = torch.zeros_like(self.features['xyz_t'][:,:1])
xyz_t_sc[:,:,:,:3] = xyz_prev_template[:,:,:,:3]
xyz_t_sc[:,:,:,3:] = float('nan')
t1d_sc = torch.clone(self.features['t1d'][:,:1])
t1d_sc[:,:,~self_conditioning_mask] = 0
t1d_sc[:,:,mask_str[0][0]] = 0
self.features['t1d'] = torch.cat([self.features['t1d'][:,:1],t1d_sc], dim=1)
self.features['t2d'] = torch.cat([self.features['t2d'][:,:1],t2d_sc], dim=1)
self.features['xyz_t'] = torch.cat([self.features['xyz_t'][:,:1],xyz_t_sc], dim=1)
self.features['alpha'], self.features['alpha_t'] = diff_utils.get_alphas(self.features['t1d'], self.features['xyz_t'],
self.features['B'], self.features['L'],
self.ti_dev, self.ti_flip, self.ang_ref)
self.features['xyz_t'] = get_init_xyz(self.features['xyz_t'])
def self_condition_str(self):
'''
conditioining on strucutre in NAR way
'''
print("conditioning on structure for NAR structure noising")
xyz_t_str_sc = torch.zeros_like(self.features['xyz_t'][:,:1])
xyz_t_str_sc[:,:,:,:3] = torch.clone(self.features['xyz'])[None]
xyz_t_str_sc[:,:,:,3:] = float('nan')
t2d_str_sc = xyz_to_t2d(self.features['xyz_t'])
t1d_str_sc = torch.clone(self.features['t1d'])
self.features['xyz_t'] = torch.cat([self.features['xyz_t'],xyz_t_str_sc], dim=1)
self.features['t2d'] = torch.cat([self.features['t2d'],t2d_str_sc], dim=1)
self.features['t1d'] = torch.cat([self.features['t1d'],t1d_str_sc], dim=1)
def save_step(self):
'''
add step to trajectory dictionary
'''
self.trajectory[f'step{self.t}'] = (self.features['xyz'].squeeze().detach().cpu(),
self.features['logit_aa_s'][0,:21,:].permute(1,0).detach().cpu(),
self.features['seq_diffused'][0,:,:21].detach().cpu())
def noise_x(self):
'''
get X_t-1 from predicted Xo
'''
# sample x_t-1
self.features['post_mean'] = self.diffuser.q_sample(self.features['seq_out'], self.t, DEVICE=self.DEVICE)
if self.features['sym'] > 1:
self.features['post_mean'] = self.symmetrize_seq(self.features['post_mean'])
# update seq and masks
self.features['seq_diffused'][0,~self.features['mask_seq'][0],:21] = self.features['post_mean'][~self.features['mask_seq'][0],...]
self.features['seq_diffused'][0,:,21] = 0.0
# did not know we were clamping seq
self.features['seq_diffused'] = torch.clamp(self.features['seq_diffused'], min=-3, max=3)
# match other features to seq diffused
self.features['seq'] = torch.argmax(self.features['seq_diffused'], dim=-1)[None]
self.features['msa_masked'][:,:,:,:,:22] = self.features['seq_diffused']
self.features['msa_masked'][:,:,:,:,22:44] = self.features['seq_diffused']
self.features['msa_full'][:,:,:,:,:22] = self.features['seq_diffused']
self.features['t1d'][:1,:,:,22] = 1-int(self.t)/self.args['T']
def apply_potentials(self):
'''
apply potentials
'''
grads = torch.zeros_like(self.features['seq_out'])
for p in self.potential_list:
grads += p.get_gradients(self.features['seq_out'])
self.features['seq_out'] += (grads/len(self.potential_list))
def generate_sample(self):
'''
sample from the model
this function runs the full sampling loop
'''
# setup example
self.setup()
# start time
self.start_time = time.time()
# set up dictionary to save at each step in trajectory
self.trajectory = {}
# set out prefix
self.out_prefix = self.args['out']+f'_{self.design_num:06}'
print(f'Generating sample {self.design_num:06} ...')
# main sampling loop
for j in range(self.max_t):
self.t = torch.tensor(self.max_t-j-1).to(self.DEVICE)
# run features through the model to get X_o prediction
self.predict_x()
# save step
if self.args['save_all_steps']:
self.save_step()
# get seq out
self.features['seq_out'] = torch.permute(self.features['logit_aa_s'][0], (1,0))
# save best seq
if self.features['pred_lddt'][~self.features['mask_seq']].mean().item() > self.features['best_plddt']:
self.features['best_seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
self.features['best_pred_lddt'] = torch.clone(self.features['pred_lddt'])
self.features['best_xyz'] = torch.clone(self.features['xyz'])
self.features['best_plddt'] = self.features['pred_lddt'][~self.features['mask_seq']].mean().item()
# self condition on sequence
self.self_condition_seq()
# self condition on structure
if self.args['scheduled_str_cond']:
self.self_condition_str_scheduled()
if self.args['struc_cond_sc']:
self.self_condition_str()
# sequence alterations
if self.args['softmax_seqout']:
self.features['seq_out'] = torch.softmax(self.features['seq_out'],dim=-1)*2-1
if self.args['clamp_seqout']:
self.features['seq_out'] = torch.clamp(self.features['seq_out'],
min=-((1/self.diffuser.alphas_cumprod[t])*0.25+5),
max=((1/self.diffuser.alphas_cumprod[t])*0.25+5))
# apply potentials
if self.use_potentials:
self.apply_potentials()
# noise to X_t-1
if self.t != 0:
self.noise_x()
print(''.join([self.conversion[i] for i in torch.argmax(self.features['seq_out'],dim=-1)]))
print (" TIMESTEP [%02d/%02d] | current PLDDT: %.4f << >> best PLDDT: %.4f"%(
self.t+1, self.args['T'], self.features['pred_lddt'][~self.features['mask_seq']].mean().item(),
self.features['best_pred_lddt'][~self.features['mask_seq']].mean().item()))
# record time
self.delta_time = time.time() - self.start_time
# save outputs
self.save_outputs()
# increment design num
self.design_num += 1
print(f'Finished design {self.out_prefix} in {self.delta_time/60:.2f} minutes.')
def save_outputs(self):
'''
save the outputs from the model
'''
# save trajectory
if self.args['save_all_steps']:
fname = f'{self.out_prefix}_trajectory.pt'
torch.save(self.trajecotry, fname)
# get items from best plddt step
if self.args['save_best_plddt']:
self.features['seq'] = torch.clone(self.features['best_seq'])
self.features['pred_lddt'] = torch.clone(self.features['best_pred_lddt'])
self.features['xyz'] = torch.clone(self.features['best_xyz'])
# get chain IDs
if (self.args['sampling_temp'] == 1.0 and self.args['trb'] == None) or (self.args['sequence'] not in ['',None]):
chain_ids = [i[0] for i in self.features['pdb_idx']]
elif self.args['dump_pdb']:
chain_ids = [i[0] for i in self.features['parsed_pdb']['pdb_idx']]
# write output pdb
fname = self.out_prefix + '.pdb'
if len(self.features['seq'].shape) == 2:
self.features['seq'] = self.features['seq'].squeeze()
write_pdb(fname,
self.features['seq'].type(torch.int64),
self.features['xyz'].squeeze(),
Bfacts=self.features['pred_lddt'].squeeze(),
chains=chain_ids)
if self.args['dump_trb']:
self.save_trb()
if self.args['save_args']:
self.save_args()
def save_trb(self):
'''
save trb file
'''
lddt = self.features['pred_lddt'].squeeze().cpu().numpy()
strmasktemp = self.features['mask_str'].squeeze().cpu().numpy()
partial_lddt = [lddt[i] for i in range(np.shape(strmasktemp)[0]) if strmasktemp[i] == 0]
trb = {}
trb['lddt'] = lddt
trb['inpaint_lddt'] = partial_lddt
trb['contigs'] = self.args['contigs']
trb['device'] = self.DEVICE
trb['time'] = self.delta_time
trb['args'] = self.args
if self.args['sequence'] != None:
for key, value in self.features['trb_d'].items():
trb[key] = value
else:
for key, value in self.features['mappings'].items():
if key in self.features['trb_d'].keys():
trb[key] = self.features['trb_d'][key]
else:
if len(value) > 0:
if type(value) == list and type(value[0]) != tuple:
value=np.array(value)
trb[key] = value
with open(f'{self.out_prefix}.trb','wb') as f_out:
pickle.dump(trb, f_out)
def save_args(self):
'''
save args
'''
with open(f'{self.out_prefix}_args.json','w') as f_out:
json.dump(self.args, f_out)
#####################################################################
###################### science is cool ##############################
#####################################################################
# making a custom sampler class for HuggingFace app
class HuggingFace_sampler(SEQDIFF_sampler):
def model_init(self):
'''
get model set up and choose checkpoint
'''
if self.args['checkpoint'] == None:
self.args['checkpoint'] = DEFAULT_CKPT
self.MODEL_PARAM['d_t1d'] = self.args['d_t1d']
# check to make sure checkpoint chosen exists
if not os.path.exists(self.args['checkpoint']):
print('WARNING: couldn\'t find checkpoint')
self.ckpt = torch.load(self.args['checkpoint'], map_location=self.DEVICE)
# check to see if [loader_param, model_param, loss_param] is in checkpoint
# if so then you are using v2 of inference with t2d bug fixed
self.v2_mode = False
if 'model_param' in self.ckpt.keys():
print('You are running a new v2 model switching into v2 inference mode')
self.v2_mode = True
for k in self.MODEL_PARAM.keys():
if k in self.ckpt['model_param'].keys():
self.MODEL_PARAM[k] = self.ckpt['model_param'][k]
else:
print(f'no match for {k} in loaded model params')
# make model and load checkpoint
print('Loading model checkpoint...')
self.model = RoseTTAFoldModule(**self.MODEL_PARAM).to(self.DEVICE)
model_state = self.ckpt['model_state_dict']
self.model.load_state_dict(model_state, strict=False)
self.model.eval()
print('Successfully loaded model checkpoint')
def generate_sample(self):
'''
sample from the model
this function runs the full sampling loop
'''
# setup example
self.setup()
# start time
self.start_time = time.time()
# set up dictionary to save at each step in trajectory
self.trajectory = {}
# set out prefix
print(f'Generating sample {self.out_prefix} ...')
# main sampling loop
for j in range(self.max_t):
self.t = torch.tensor(self.max_t-j-1).to(self.DEVICE)
# run features through the model to get X_o prediction
self.predict_x()
# save step
if self.args['save_all_steps']:
self.save_step()
# get seq out
self.features['seq_out'] = torch.permute(self.features['logit_aa_s'][0], (1,0))
# save best seq
if self.features['pred_lddt'].mean().item() > self.features['best_plddt']:
self.features['best_seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
self.features['best_pred_lddt'] = torch.clone(self.features['pred_lddt'])
self.features['best_xyz'] = torch.clone(self.features['xyz'])
self.features['best_plddt'] = self.features['pred_lddt'][~self.features['mask_seq']].mean().item()
# self condition on sequence
self.self_condition_seq()
# self condition on structure
if self.args['scheduled_str_cond']:
self.self_condition_str_scheduled()
if self.args['struc_cond_sc']:
self.self_condition_str()
# sequence alterations
if self.args['softmax_seqout']:
self.features['seq_out'] = torch.softmax(self.features['seq_out'],dim=-1)*2-1
if self.args['clamp_seqout']:
self.features['seq_out'] = torch.clamp(self.features['seq_out'],
min=-((1/self.diffuser.alphas_cumprod[t])*0.25+5),
max=((1/self.diffuser.alphas_cumprod[t])*0.25+5))
# apply potentials
if self.use_potentials:
self.apply_potentials()
# noise to X_t-1
if self.t != 0:
self.noise_x()
print(''.join([self.conversion[i] for i in torch.argmax(self.features['seq_out'],dim=-1)]))
print (" TIMESTEP [%02d/%02d] | current PLDDT: %.4f << >> best PLDDT: %.4f"%(
self.t+1, self.args['T'], self.features['pred_lddt'][~self.features['mask_seq']].mean().item(),
self.features['best_pred_lddt'][~self.features['mask_seq']].mean().item()))
# record time
self.delta_time = time.time() - self.start_time
# save outputs
self.save_outputs()
# increment design num
self.design_num += 1
print(f'Finished design {self.out_prefix} in {self.delta_time/60:.2f} minutes.')
def take_step_get_outputs(self, j):
self.t = torch.tensor(self.max_t-j-1).to(self.DEVICE)
# run features through the model to get X_o prediction
self.predict_x()
# save step
if self.args['save_all_steps']:
self.save_step()
# get seq out
self.features['seq_out'] = torch.permute(self.features['logit_aa_s'][0], (1,0))
# save best seq
if self.features['pred_lddt'].mean().item() > self.features['best_plddt']:
self.features['best_seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
self.features['best_pred_lddt'] = torch.clone(self.features['pred_lddt'])
self.features['best_xyz'] = torch.clone(self.features['xyz'])
self.features['best_plddt'] = self.features['pred_lddt'].mean().item()
# WRITE OUTPUT TO GET TEMPORARY PDB TO DISPLAY
if self.t != 0:
self.features['seq'] = torch.argmax(torch.clone(self.features['seq_out']), dim=-1)
else:
# prepare final output
if self.args['save_args']:
self.save_args()
# get items from best plddt step
if self.args['save_best_plddt']:
self.features['seq'] = torch.clone(self.features['best_seq'])
self.features['pred_lddt'] = torch.clone(self.features['best_pred_lddt'])
self.features['xyz'] = torch.clone(self.features['best_xyz'])
# get chain IDs
if (self.args['sampling_temp'] == 1.0 and self.args['trb'] == None) or (self.args['sequence'] not in ['',None]):
chain_ids = [i[0] for i in self.features['pdb_idx']]
elif self.args['dump_pdb']:
chain_ids = [i[0] for i in self.features['parsed_pdb']['pdb_idx']]
# write output pdb
if len(self.features['seq'].shape) == 2:
self.features['seq'] = self.features['seq'].squeeze()
fname = f'{self.out_prefix}.pdb'
write_pdb(fname, self.features['seq'].type(torch.int64),
self.features['xyz'].squeeze(),
Bfacts=self.features['pred_lddt'].squeeze(),
chains=chain_ids)
aa_seq = ''.join([self.conversion[x] for x in self.features['seq'].tolist()])
# self condition on sequence
self.self_condition_seq()
# self condition on structure
if self.args['scheduled_str_cond']:
self.self_condition_str_scheduled()
if self.args['struc_cond_sc']:
self.self_condition_str()
# sequence alterations
if self.args['softmax_seqout']:
self.features['seq_out'] = torch.softmax(self.features['seq_out'],dim=-1)*2-1
if self.args['clamp_seqout']:
self.features['seq_out'] = torch.clamp(self.features['seq_out'],
min=-((1/self.diffuser.alphas_cumprod[t])*0.25+5),
max=((1/self.diffuser.alphas_cumprod[t])*0.25+5))
# apply potentials
if self.use_potentials:
self.apply_potentials()
# noise to X_t-1
if self.t != 0:
self.noise_x()
print(''.join([self.conversion[i] for i in torch.argmax(self.features['seq_out'],dim=-1)]))
print (" TIMESTEP [%02d/%02d] | current PLDDT: %.4f << >> best PLDDT: %.4f"%(
self.t+1, self.args['T'], self.features['pred_lddt'][~self.features['mask_seq']].mean().item(),
self.features['best_pred_lddt'][~self.features['mask_seq']].mean().item()))
return aa_seq, fname, self.features['pred_lddt'].mean().item()
def get_outputs(self):
aa_seq = ''.join([self.conversion[x] for x in self.features['seq'].tolist()])
path_to_pdb = self.out_prefix+'.pdb'
return aa_seq, path_to_pdb, self.features['pred_lddt'].mean().item()
|