Spaces:
Starting
on
L40S
Starting
on
L40S
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from opt_einsum import contract as einsum | |
import torch.utils.checkpoint as checkpoint | |
from util import get_tips | |
from util_module import Dropout, create_custom_forward, rbf, init_lecun_normal | |
from Attention_module import Attention, FeedForwardLayer, AttentionWithBias | |
from Track_module import PairStr2Pair | |
from icecream import ic | |
# Module contains classes and functions to generate initial embeddings | |
class PositionalEncoding2D(nn.Module): | |
# Add relative positional encoding to pair features | |
def __init__(self, d_model, minpos=-32, maxpos=32, p_drop=0.1): | |
super(PositionalEncoding2D, self).__init__() | |
self.minpos = minpos | |
self.maxpos = maxpos | |
self.nbin = abs(minpos)+maxpos+1 | |
self.emb = nn.Embedding(self.nbin, d_model) | |
self.drop = nn.Dropout(p_drop) | |
def forward(self, x, idx): | |
bins = torch.arange(self.minpos, self.maxpos, device=x.device) | |
seqsep = idx[:,None,:] - idx[:,:,None] # (B, L, L) | |
# | |
ib = torch.bucketize(seqsep, bins).long() # (B, L, L) | |
emb = self.emb(ib) #(B, L, L, d_model) | |
x = x + emb # add relative positional encoding | |
return self.drop(x) | |
class MSA_emb(nn.Module): | |
# Get initial seed MSA embedding | |
def __init__(self, d_msa=256, d_pair=128, d_state=32, d_init=22+22+2+2, | |
minpos=-32, maxpos=32, p_drop=0.1): | |
super(MSA_emb, self).__init__() | |
self.emb = nn.Linear(d_init, d_msa) # embedding for general MSA | |
self.emb_q = nn.Embedding(22, d_msa) # embedding for query sequence -- used for MSA embedding | |
self.emb_left = nn.Embedding(22, d_pair) # embedding for query sequence -- used for pair embedding | |
self.emb_right = nn.Embedding(22, d_pair) # embedding for query sequence -- used for pair embedding | |
self.emb_state = nn.Embedding(22, d_state) | |
self.drop = nn.Dropout(p_drop) | |
self.pos = PositionalEncoding2D(d_pair, minpos=minpos, maxpos=maxpos, p_drop=p_drop) | |
self.reset_parameter() | |
def reset_parameter(self): | |
self.emb = init_lecun_normal(self.emb) | |
self.emb_q = init_lecun_normal(self.emb_q) | |
self.emb_left = init_lecun_normal(self.emb_left) | |
self.emb_right = init_lecun_normal(self.emb_right) | |
self.emb_state = init_lecun_normal(self.emb_state) | |
nn.init.zeros_(self.emb.bias) | |
def forward(self, msa, seq, idx, seq1hot=None): | |
# Inputs: | |
# - msa: Input MSA (B, N, L, d_init) | |
# - seq: Input Sequence (B, L) | |
# - idx: Residue index | |
# Outputs: | |
# - msa: Initial MSA embedding (B, N, L, d_msa) | |
# - pair: Initial Pair embedding (B, L, L, d_pair) | |
N = msa.shape[1] # number of sequenes in MSA | |
# msa embedding | |
msa = self.emb(msa) # (B, N, L, d_model) # MSA embedding | |
seq = seq.long() | |
tmp = self.emb_q(seq).unsqueeze(1) # (B, 1, L, d_model) -- query embedding | |
msa = msa + tmp.expand(-1, N, -1, -1) # adding query embedding to MSA | |
msa = self.drop(msa) | |
# pair embedding | |
if seq1hot is not None: | |
left = (seq1hot @ self.emb_left.weight)[:,None] # (B, 1, L, d_pair) | |
right = (seq1hot @ self.emb_right.weight)[:,:,None] # (B, L, 1, d_pair) | |
else: | |
left = self.emb_left(seq)[:,None] # (B, 1, L, d_pair) | |
right = self.emb_right(seq)[:,:,None] # (B, L, 1, d_pair) | |
#ic(torch.norm(self.emb_left.weight, dim=1)) | |
#ic(torch.norm(self.emb_right.weight, dim=1)) | |
pair = left + right # (B, L, L, d_pair) | |
pair = self.pos(pair, idx) # add relative position | |
# state embedding | |
state = self.drop(self.emb_state(seq)) | |
return msa, pair, state | |
class Extra_emb(nn.Module): | |
# Get initial seed MSA embedding | |
def __init__(self, d_msa=256, d_init=22+1+2, p_drop=0.1): | |
super(Extra_emb, self).__init__() | |
self.emb = nn.Linear(d_init, d_msa) # embedding for general MSA | |
self.emb_q = nn.Embedding(22, d_msa) # embedding for query sequence | |
self.drop = nn.Dropout(p_drop) | |
self.reset_parameter() | |
def reset_parameter(self): | |
self.emb = init_lecun_normal(self.emb) | |
nn.init.zeros_(self.emb.bias) | |
def forward(self, msa, seq, idx, seq1hot=None): | |
# Inputs: | |
# - msa: Input MSA (B, N, L, d_init) | |
# - seq: Input Sequence (B, L) | |
# - idx: Residue index | |
# Outputs: | |
# - msa: Initial MSA embedding (B, N, L, d_msa) | |
N = msa.shape[1] # number of sequenes in MSA | |
msa = self.emb(msa) # (B, N, L, d_model) # MSA embedding | |
if seq1hot is not None: | |
seq = (seq1hot @ self.emb_q.weight).unsqueeze(1) # (B, 1, L, d_model) -- query embedding | |
else: | |
seq = self.emb_q(seq).unsqueeze(1) # (B, 1, L, d_model) -- query embedding | |
#ic(torch.norm(self.emb_q.weight, dim=1)) | |
msa = msa + seq.expand(-1, N, -1, -1) # adding query embedding to MSA | |
return self.drop(msa) | |
class TemplatePairStack(nn.Module): | |
# process template pairwise features | |
# use structure-biased attention | |
def __init__(self, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.25): | |
super(TemplatePairStack, self).__init__() | |
self.n_block = n_block | |
proc_s = [PairStr2Pair(d_pair=d_templ, n_head=n_head, d_hidden=d_hidden, p_drop=p_drop) for i in range(n_block)] | |
self.block = nn.ModuleList(proc_s) | |
self.norm = nn.LayerNorm(d_templ) | |
def forward(self, templ, rbf_feat, use_checkpoint=False): | |
B, T, L = templ.shape[:3] | |
templ = templ.reshape(B*T, L, L, -1) | |
for i_block in range(self.n_block): | |
if use_checkpoint: | |
templ = checkpoint.checkpoint(create_custom_forward(self.block[i_block]), templ, rbf_feat) | |
else: | |
templ = self.block[i_block](templ, rbf_feat) | |
return self.norm(templ).reshape(B, T, L, L, -1) | |
class TemplateTorsionStack(nn.Module): | |
def __init__(self, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.15): | |
super(TemplateTorsionStack, self).__init__() | |
self.n_block=n_block | |
self.proj_pair = nn.Linear(d_templ+36, d_templ) | |
proc_s = [AttentionWithBias(d_in=d_templ, d_bias=d_templ, | |
n_head=n_head, d_hidden=d_hidden) for i in range(n_block)] | |
self.row_attn = nn.ModuleList(proc_s) | |
proc_s = [FeedForwardLayer(d_templ, 4, p_drop=p_drop) for i in range(n_block)] | |
self.ff = nn.ModuleList(proc_s) | |
self.norm = nn.LayerNorm(d_templ) | |
def reset_parameter(self): | |
self.proj_pair = init_lecun_normal(self.proj_pair) | |
nn.init.zeros_(self.proj_pair.bias) | |
def forward(self, tors, pair, rbf_feat, use_checkpoint=False): | |
B, T, L = tors.shape[:3] | |
tors = tors.reshape(B*T, L, -1) | |
pair = pair.reshape(B*T, L, L, -1) | |
pair = torch.cat((pair, rbf_feat), dim=-1) | |
pair = self.proj_pair(pair) | |
for i_block in range(self.n_block): | |
if use_checkpoint: | |
tors = tors + checkpoint.checkpoint(create_custom_forward(self.row_attn[i_block]), tors, pair) | |
else: | |
tors = tors + self.row_attn[i_block](tors, pair) | |
tors = tors + self.ff[i_block](tors) | |
return self.norm(tors).reshape(B, T, L, -1) | |
class Templ_emb(nn.Module): | |
# Get template embedding | |
# Features are | |
# t2d: | |
# - 37 distogram bins + 6 orientations (43) | |
# - Mask (missing/unaligned) (1) | |
# t1d: | |
# - tiled AA sequence (20 standard aa + gap) | |
# - seq confidence (1) | |
# - global time step (1) | |
# - struc confidence (1) | |
# | |
def __init__(self, d_t1d=21+1+1+1, d_t2d=43+1, d_tor=30, d_pair=128, d_state=32, | |
n_block=2, d_templ=64, | |
n_head=4, d_hidden=16, p_drop=0.25): | |
super(Templ_emb, self).__init__() | |
# process 2D features | |
self.emb = nn.Linear(d_t1d*2+d_t2d, d_templ) | |
self.templ_stack = TemplatePairStack(n_block=n_block, d_templ=d_templ, n_head=n_head, | |
d_hidden=d_hidden, p_drop=p_drop) | |
self.attn = Attention(d_pair, d_templ, n_head, d_hidden, d_pair, p_drop=p_drop) | |
# process torsion angles | |
self.emb_t1d = nn.Linear(d_t1d+d_tor, d_templ) | |
self.proj_t1d = nn.Linear(d_templ, d_templ) | |
#self.tor_stack = TemplateTorsionStack(n_block=n_block, d_templ=d_templ, n_head=n_head, | |
# d_hidden=d_hidden, p_drop=p_drop) | |
self.attn_tor = Attention(d_state, d_templ, n_head, d_hidden, d_state, p_drop=p_drop) | |
self.reset_parameter() | |
def reset_parameter(self): | |
self.emb = init_lecun_normal(self.emb) | |
#nn.init.zeros_(self.emb.weight) #init weights to zero | |
nn.init.zeros_(self.emb.bias) | |
nn.init.kaiming_normal_(self.emb_t1d.weight, nonlinearity='relu') | |
#nn.init.zeros_(self.emb_t1d.weight) | |
nn.init.zeros_(self.emb_t1d.bias) | |
self.proj_t1d = init_lecun_normal(self.proj_t1d) | |
nn.init.zeros_(self.proj_t1d.bias) | |
def forward(self, t1d, t2d, alpha_t, xyz_t, pair, state, use_checkpoint=False): | |
# Input | |
# - t1d: 1D template info (B, T, L, 23) 24 SL | |
# - t2d: 2D template info (B, T, L, L, 44) | |
B, T, L, _ = t1d.shape | |
# Prepare 2D template features | |
left = t1d.unsqueeze(3).expand(-1,-1,-1,L,-1) | |
right = t1d.unsqueeze(2).expand(-1,-1,L,-1,-1) | |
# | |
templ = torch.cat((t2d, left, right), -1) # (B, T, L, L, 88) | |
#ic(templ.shape) | |
#ic(templ.dtype) | |
#ic(self.emb.weight.dtype) | |
templ = self.emb(templ) # Template templures (B, T, L, L, d_templ) | |
# process each template features | |
xyz_t = xyz_t.reshape(B*T, L, -1, 3) | |
rbf_feat = rbf(torch.cdist(xyz_t[:,:,1], xyz_t[:,:,1])) | |
templ = self.templ_stack(templ, rbf_feat, use_checkpoint=use_checkpoint) # (B, T, L,L, d_templ) | |
# Prepare 1D template torsion angle features | |
t1d = torch.cat((t1d, alpha_t), dim=-1) # (B, T, L, 22+30) | |
# process each template features | |
t1d = self.proj_t1d(F.relu_(self.emb_t1d(t1d))) | |
# mixing query state features to template state features | |
state = state.reshape(B*L, 1, -1) | |
t1d = t1d.permute(0,2,1,3).reshape(B*L, T, -1) | |
if use_checkpoint: | |
out = checkpoint.checkpoint(create_custom_forward(self.attn_tor), state, t1d, t1d) | |
out = out.reshape(B, L, -1) | |
else: | |
out = self.attn_tor(state, t1d, t1d).reshape(B, L, -1) | |
state = state.reshape(B, L, -1) | |
state = state + out | |
# mixing query pair features to template information (Template pointwise attention) | |
pair = pair.reshape(B*L*L, 1, -1) | |
templ = templ.permute(0, 2, 3, 1, 4).reshape(B*L*L, T, -1) | |
if use_checkpoint: | |
out = checkpoint.checkpoint(create_custom_forward(self.attn), pair, templ, templ) | |
out = out.reshape(B, L, L, -1) | |
else: | |
out = self.attn(pair, templ, templ).reshape(B, L, L, -1) | |
# | |
pair = pair.reshape(B, L, L, -1) | |
pair = pair + out | |
return pair, state | |
class Recycling(nn.Module): | |
def __init__(self, d_msa=256, d_pair=128, d_state=32): | |
super(Recycling, self).__init__() | |
self.proj_dist = nn.Linear(36+d_state*2, d_pair) | |
self.norm_state = nn.LayerNorm(d_state) | |
self.norm_pair = nn.LayerNorm(d_pair) | |
self.norm_msa = nn.LayerNorm(d_msa) | |
self.reset_parameter() | |
def reset_parameter(self): | |
self.proj_dist = init_lecun_normal(self.proj_dist) | |
nn.init.zeros_(self.proj_dist.bias) | |
def forward(self, seq, msa, pair, xyz, state): | |
B, L = pair.shape[:2] | |
state = self.norm_state(state) | |
# | |
left = state.unsqueeze(2).expand(-1,-1,L,-1) | |
right = state.unsqueeze(1).expand(-1,L,-1,-1) | |
# three anchor atoms | |
N = xyz[:,:,0] | |
Ca = xyz[:,:,1] | |
C = xyz[:,:,2] | |
# recreate Cb given N,Ca,C | |
b = Ca - N | |
c = C - Ca | |
a = torch.cross(b, c, dim=-1) | |
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca | |
dist = rbf(torch.cdist(Cb, Cb)) | |
dist = torch.cat((dist, left, right), dim=-1) | |
dist = self.proj_dist(dist) | |
pair = dist + self.norm_pair(pair) | |
msa = self.norm_msa(msa) | |
return msa, pair, state | |