Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
import torch.distributed as dist | |
from abc import ABC | |
from torch.utils.data import DataLoader, DistributedSampler, Dataset | |
from se3_transformer.runtime.utils import get_local_rank | |
def _get_dataloader(dataset: Dataset, shuffle: bool, **kwargs) -> DataLoader: | |
# Classic or distributed dataloader depending on the context | |
sampler = DistributedSampler(dataset, shuffle=shuffle) if dist.is_initialized() else None | |
return DataLoader(dataset, shuffle=(shuffle and sampler is None), sampler=sampler, **kwargs) | |
class DataModule(ABC): | |
""" Abstract DataModule. Children must define self.ds_{train | val | test}. """ | |
def __init__(self, **dataloader_kwargs): | |
super().__init__() | |
if get_local_rank() == 0: | |
self.prepare_data() | |
# Wait until rank zero has prepared the data (download, preprocessing, ...) | |
if dist.is_initialized(): | |
dist.barrier(device_ids=[get_local_rank()]) | |
self.dataloader_kwargs = {'pin_memory': True, 'persistent_workers': True, **dataloader_kwargs} | |
self.ds_train, self.ds_val, self.ds_test = None, None, None | |
def prepare_data(self): | |
""" Method called only once per node. Put here any downloading or preprocessing """ | |
pass | |
def train_dataloader(self) -> DataLoader: | |
return _get_dataloader(self.ds_train, shuffle=True, **self.dataloader_kwargs) | |
def val_dataloader(self) -> DataLoader: | |
return _get_dataloader(self.ds_val, shuffle=False, **self.dataloader_kwargs) | |
def test_dataloader(self) -> DataLoader: | |
return _get_dataloader(self.ds_test, shuffle=False, **self.dataloader_kwargs) | |