Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
#from equivariant_attention.modules import get_basis_and_r, GSE3Res, GNormBias | |
#from equivariant_attention.modules import GConvSE3, GNormSE3 | |
#from equivariant_attention.fibers import Fiber | |
from util_module import init_lecun_normal_param | |
from se3_transformer.model import SE3Transformer | |
from se3_transformer.model.fiber import Fiber | |
class SE3TransformerWrapper(nn.Module): | |
"""SE(3) equivariant GCN with attention""" | |
def __init__(self, num_layers=2, num_channels=32, num_degrees=3, n_heads=4, div=4, | |
l0_in_features=32, l0_out_features=32, | |
l1_in_features=3, l1_out_features=2, | |
num_edge_features=32): | |
super().__init__() | |
# Build the network | |
self.l1_in = l1_in_features | |
# | |
fiber_edge = Fiber({0: num_edge_features}) | |
if l1_out_features > 0: | |
if l1_in_features > 0: | |
fiber_in = Fiber({0: l0_in_features, 1: l1_in_features}) | |
fiber_hidden = Fiber.create(num_degrees, num_channels) | |
fiber_out = Fiber({0: l0_out_features, 1: l1_out_features}) | |
else: | |
fiber_in = Fiber({0: l0_in_features}) | |
fiber_hidden = Fiber.create(num_degrees, num_channels) | |
fiber_out = Fiber({0: l0_out_features, 1: l1_out_features}) | |
else: | |
if l1_in_features > 0: | |
fiber_in = Fiber({0: l0_in_features, 1: l1_in_features}) | |
fiber_hidden = Fiber.create(num_degrees, num_channels) | |
fiber_out = Fiber({0: l0_out_features}) | |
else: | |
fiber_in = Fiber({0: l0_in_features}) | |
fiber_hidden = Fiber.create(num_degrees, num_channels) | |
fiber_out = Fiber({0: l0_out_features}) | |
self.se3 = SE3Transformer(num_layers=num_layers, | |
fiber_in=fiber_in, | |
fiber_hidden=fiber_hidden, | |
fiber_out = fiber_out, | |
num_heads=n_heads, | |
channels_div=div, | |
fiber_edge=fiber_edge, | |
use_layer_norm=True) | |
#use_layer_norm=False) | |
self.reset_parameter() | |
def reset_parameter(self): | |
# make sure linear layer before ReLu are initialized with kaiming_normal_ | |
for n, p in self.se3.named_parameters(): | |
if "bias" in n: | |
nn.init.zeros_(p) | |
elif len(p.shape) == 1: | |
continue | |
else: | |
if "radial_func" not in n: | |
p = init_lecun_normal_param(p) | |
else: | |
if "net.6" in n: | |
nn.init.zeros_(p) | |
else: | |
nn.init.kaiming_normal_(p, nonlinearity='relu') | |
# make last layers to be zero-initialized | |
#self.se3.graph_modules[-1].to_kernel_self['0'] = init_lecun_normal_param(self.se3.graph_modules[-1].to_kernel_self['0']) | |
#self.se3.graph_modules[-1].to_kernel_self['1'] = init_lecun_normal_param(self.se3.graph_modules[-1].to_kernel_self['1']) | |
nn.init.zeros_(self.se3.graph_modules[-1].to_kernel_self['0']) | |
nn.init.zeros_(self.se3.graph_modules[-1].to_kernel_self['1']) | |
def forward(self, G, type_0_features, type_1_features=None, edge_features=None): | |
if self.l1_in > 0: | |
node_features = {'0': type_0_features, '1': type_1_features} | |
else: | |
node_features = {'0': type_0_features} | |
edge_features = {'0': edge_features} | |
return self.se3(G, node_features, edge_features) | |