Spaces:
Sleeping
Sleeping
import torch | |
orig_t1d = 22 | |
#orig_t1d = 23 | |
orig_t2d = 44 | |
orig_dtor = 30 | |
new_t1d = orig_t1d + 2 + 4 + 1 #(+2 time step and seq confidence) + 4 (dssp) + 1 (hot spot) | |
new_t2d = orig_t2d + 0 | |
#ckpt = torch.load('/net/scratch/jgershon/models/autofold4_seq2str_base.pt', map_location=torch.device('cpu')) | |
#ckpt = torch.load('/home/jgershon/projects/c6d_diff/BFF/autofold4/experiments/2209235seqdiffV4_accum4_str5_aa5_continued/models/BFF_4.pt', map_location=torch.device('cpu')) | |
ckpt = torch.load('/net/scratch/lisanza/diffuse_3track_fullcon/models/BFF_last.pt', map_location=torch.device('cpu')) | |
weights = ckpt['model_state_dict'] | |
print("original weights") | |
print('templ_emb.emb.weight', weights['templ_emb.emb.weight'].shape) | |
print('templ_emb.emb_t1d.weight', weights['templ_emb.emb_t1d.weight'].shape) | |
# weights['templ_emb.emb.weight'] # Original shape: (64, 88) | |
# weights['templ_emb.emb_t1d.weight'] # Original shape: (64, 52) | |
# Adding 2D embedding features | |
# d_t1d*2+d_t2d | |
if True: | |
#pt1_add_dim = new_t2d - orig_t2d | |
pt2_add_dim = new_t1d - orig_t1d | |
pt3_add_dim = new_t1d - orig_t1d | |
#pt1_emb_zeros = torch.zeros(64, pt1_add_dim) | |
pt2_emb_zeros = torch.zeros(64, pt2_add_dim) | |
pt3_emb_zeros = torch.zeros(64, pt3_add_dim) | |
''' | |
The way that the t2d input to embedding is created is not straightforward | |
It looks like this: | |
# Prepare 2D template features | |
left = t1d.unsqueeze(3).expand(-1,-1,-1,L,-1) | |
right = t1d.unsqueeze(2).expand(-1,-1,L,-1,-1) | |
templ = torch.cat((t2d, left, right), -1) # (B, T, L, L, 109) | |
templ = self.emb(templ) # Template templures (B, T, L, L, d_templ) | |
''' | |
#new_emb_weights = torch.cat( (weights['templ_emb.emb.weight'][:,:orig_t2d], pt1_emb_zeros), dim=-1 ) | |
#new_emb_weights = torch.cat( (new_emb_weights, weights['templ_emb.emb.weight'][:,orig_t2d:orig_t2d+orig_t1d], pt2_emb_zeros), dim=-1 ) | |
new_emb_weights = torch.cat( (weights['templ_emb.emb.weight'][:,:orig_t2d+orig_t1d], pt2_emb_zeros), dim=-1 ) | |
new_emb_weights = torch.cat( (new_emb_weights, weights['templ_emb.emb.weight'][:,orig_t2d+orig_t1d:], pt3_emb_zeros), dim=-1 ) | |
#new_emb_weights = torch.cat( (pt1_emb_weights, pt2_emb_weights, pt3_emb_weights), dim=-1 ) | |
# Adding 1D embedding features | |
# d_t1d+d_tor | |
if True: | |
t1d_weights_dim = new_t1d + orig_dtor | |
t1d_add_dim = t1d_weights_dim - weights['templ_emb.emb_t1d.weight'].shape[1] #52 | |
t1d_zeros = torch.zeros(64, t1d_add_dim) | |
new_t1d_weights = torch.cat( (weights['templ_emb.emb_t1d.weight'][:,:orig_t1d], t1d_zeros), dim=-1 ) | |
new_t1d_weights = torch.cat( (new_t1d_weights, weights['templ_emb.emb_t1d.weight'][:,orig_t1d:]), dim=-1 ) | |
weights['templ_emb.emb.weight'] = new_emb_weights | |
weights['templ_emb.emb_t1d.weight'] = new_t1d_weights | |
print("new t1d weights dim") | |
print(new_t1d_weights.shape) | |
ckpt['model_state_dict'] = weights | |
#torch.save(ckpt, './models/t1d_23_t2d_44_BFF_last.pt') | |
#torch.save(ckpt, './models/t1d_24_t2d_44_BFF_last.pt') | |
torch.save(ckpt, '/net/scratch/lisanza/projects/diffusion/models/t1d_29_t2d_44_BFF_SE3big_2.pt') | |
#torch.save(ckpt, './models/t1d_24_t2d_44_BFF_diffV4_accum4_str5_aa5_continued.pt') | |