Spaces:
Paused
Paused
File size: 18,437 Bytes
f1a05f0 7e6b7ab f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 468d42f fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 520e8b2 fc65614 520e8b2 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 75b6e6e fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 623c312 fc65614 623c312 a73f2f6 fc65614 623c312 a73f2f6 fc65614 623c312 fc65614 623c312 a73f2f6 fc65614 a73f2f6 623c312 520e8b2 623c312 f1a05f0 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 fc65614 a73f2f6 f1a05f0 fc65614 f1a05f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
snapshot_download(
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.cuda().to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
# Preset options for resolution and frame configuration
preset_options = [
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
{"label": "992x608, 65 frames", "width": 992, "height": 608, "num_frames": 65},
{"label": "896x608, 73 frames", "width": 896, "height": 608, "num_frames": 73},
{"label": "896x544, 81 frames", "width": 896, "height": 544, "num_frames": 81},
{"label": "832x544, 89 frames", "width": 832, "height": 544, "num_frames": 89},
{"label": "800x512, 97 frames", "width": 800, "height": 512, "num_frames": 97},
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
{"label": "800x480, 105 frames", "width": 800, "height": 480, "num_frames": 105},
{"label": "736x480, 113 frames", "width": 736, "height": 480, "num_frames": 113},
{"label": "704x480, 121 frames", "width": 704, "height": 480, "num_frames": 121},
{"label": "704x448, 129 frames", "width": 704, "height": 448, "num_frames": 129},
{"label": "672x448, 137 frames", "width": 672, "height": 448, "num_frames": 137},
{"label": "640x416, 153 frames", "width": 640, "height": 416, "num_frames": 153},
{"label": "672x384, 161 frames", "width": 672, "height": 384, "num_frames": 161},
{"label": "640x384, 169 frames", "width": 640, "height": 384, "num_frames": 169},
{"label": "608x384, 177 frames", "width": 608, "height": 384, "num_frames": 177},
{"label": "576x384, 185 frames", "width": 576, "height": 384, "num_frames": 185},
{"label": "608x352, 193 frames", "width": 608, "height": 352, "num_frames": 193},
{"label": "576x352, 201 frames", "width": 576, "height": 352, "num_frames": 201},
{"label": "544x352, 209 frames", "width": 544, "height": 352, "num_frames": 209},
{"label": "512x352, 225 frames", "width": 512, "height": 352, "num_frames": 225},
{"label": "512x352, 233 frames", "width": 512, "height": 352, "num_frames": 233},
{"label": "544x320, 241 frames", "width": 544, "height": 320, "num_frames": 241},
{"label": "512x320, 249 frames", "width": 512, "height": 320, "num_frames": 249},
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
{"label": "Custom", "height": None, "width": None, "num_frames": None},
]
# Function to toggle visibility of sliders based on preset selection
def preset_changed(preset):
if preset != "Custom":
selected = next(item for item in preset_options if item["label"] == preset)
return (
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
None,
None,
None,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(device)
def generate_video_from_text(
prompt="",
negative_prompt="",
seed=171198,
num_inference_steps=40,
num_images_per_prompt=1,
guidance_scale=3,
height=512,
width=768,
num_frames=121,
frame_rate=25,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
print(images.shape)
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
return output_path
def generate_video_from_image(
image_path,
prompt="",
negative_prompt="",
seed=171198,
num_inference_steps=40,
num_images_per_prompt=1,
guidance_scale=3,
height=512,
width=768,
num_frames=121,
frame_rate=25,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
if not image_path:
raise gr.Error("Please provide an input image.", duration=5)
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(
label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=171198
)
inference_steps = gr.Slider(
label="4.2 Inference Steps", minimum=1, maximum=100, step=1, value=40
)
guidance_scale = gr.Slider(
label="4.3 Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.0
)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=704,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=1216,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=200,
step=1,
value=41,
visible=False,
)
frame_rate = gr.Slider(
label="4.7 Frame Rate",
minimum=1,
maximum=60,
step=1,
value=25,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
frame_rate,
]
# Define the Gradio interface with tabs
with gr.Blocks(theme=gr.themes.Soft()) as iface:
with gr.Row(elem_id="title-row"):
gr.Markdown(
"""
<div style="text-align: center; margin-bottom: 1em">
<h1 style="font-size: 2.5em; font-weight: 600; margin: 0.5em 0;">Video Generation with LTX Video</h1>
</div>
"""
)
with gr.Accordion(
" ๐ Tips for Best Results", open=False, elem_id="instructions-accordion"
):
gr.Markdown(
"""
๐ Prompt Engineering
When writing prompts, focus on detailed, chronological descriptions of actions and scenes. Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph. Start directly with the action, and keep descriptions literal and precise. Think like a cinematographer describing a shot list. Keep within 200 words.
For best results, build your prompts using this structure:
- Start with main action in a single sentence
- Add specific details about movements and gestures
- Describe character/object appearances precisely
- Include background and environment details
- Specify camera angles and movements
- Describe lighting and colors
- Note any changes or sudden events
See examples for more inspiration.
๐ฎ Parameter Guide
- Resolution Preset: Higher resolutions for detailed scenes, lower for faster generation and simpler scenes
- Seed: Save seed values to recreate specific styles or compositions you like
- Guidance Scale: Higher values (5-7) for accurate prompt following, lower values (3-5) for more creative freedom
- Inference Steps: More steps (40+) for quality, fewer steps (20-30) for speed
"""
)
with gr.Tabs():
# Text to Video Tab
with gr.TabItem("Text to Video"):
with gr.Row():
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: Enter Your Prompt",
placeholder="Describe the video you want to generate (minimum 50 characters)...",
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains. The sky is clear with a few wispy clouds, and the sunlight glistens on the motorcycle as it speeds along.",
lines=5,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: Enter Negative Prompt (Optional)",
placeholder="Describe what you don't want in the video...",
value="worst quality, inconsistent motion...",
lines=2,
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="1216x704, 41 frames",
label="Step 3: Choose Resolution Preset",
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 5: Generate Video", variant="primary", size="lg"
)
with gr.Column():
txt2vid_output = gr.Video(label="Step 6: Generated Output")
# Image to Video Tab
with gr.TabItem("Image to Video"):
with gr.Row():
with gr.Column():
img2vid_image = gr.Image(
type="filepath",
label="Step 1: Upload Input Image",
elem_id="image_upload",
)
img2vid_prompt = gr.Textbox(
label="Step 2: Enter Your Prompt",
placeholder="Describe how you want to animate the image (minimum 50 characters)...",
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery...",
lines=5,
)
img2vid_negative_prompt = gr.Textbox(
label="Step 3: Enter Negative Prompt (Optional)",
placeholder="Describe what you don't want in the video...",
value="worst quality, inconsistent motion...",
lines=2,
)
img2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="1216x704, 41 frames",
label="Step 4: Choose Resolution Preset",
)
img2vid_advanced = create_advanced_options()
img2vid_generate = gr.Button(
"Step 6: Generate Video", variant="primary", size="lg"
)
with gr.Column():
img2vid_output = gr.Video(label="Step 7: Generated Output")
# [Previous event handlers remain the same]
txt2vid_preset.change(
fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[4:]
)
txt2vid_generate.click(
fn=generate_video_from_text,
inputs=[txt2vid_prompt, txt2vid_negative_prompt, *txt2vid_advanced],
outputs=txt2vid_output,
)
img2vid_preset.change(
fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[4:]
)
img2vid_generate.click(
fn=generate_video_from_image,
inputs=[
img2vid_image,
img2vid_prompt,
img2vid_negative_prompt,
*img2vid_advanced,
],
outputs=img2vid_output,
)
iface.launch(share=True)
|