ginigen-sora / app.py
openfree's picture
Update app.py
0e0a395 verified
raw
history blame
25.3 kB
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import pipeline
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
# sacremoses μ„€μΉ˜ 확인
try:
import sacremoses
except ImportError:
print("Installing sacremoses...")
import subprocess
subprocess.check_call(["pip", "install", "sacremoses"])
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
from openai import OpenAI
import re
# Load system prompts
system_prompt_t2v = """당신은 λΉ„λ””μ˜€ 생성을 μœ„ν•œ ν”„λ‘¬ν”„νŠΈ μ „λ¬Έκ°€μž…λ‹ˆλ‹€.
주어진 ν”„λ‘¬ν”„νŠΈλ₯Ό λ‹€μŒ ꡬ쑰에 맞게 κ°œμ„ ν•΄μ£Όμ„Έμš”:
1. μ£Όμš” λ™μž‘μ„ λͺ…ν™•ν•œ ν•œ λ¬Έμž₯으둜 μ‹œμž‘
2. ꡬ체적인 λ™μž‘κ³Ό 제슀처λ₯Ό μ‹œκ°„ μˆœμ„œλŒ€λ‘œ μ„€λͺ…
3. 캐릭터/객체의 μ™Έλͺ¨λ₯Ό μƒμ„Ένžˆ λ¬˜μ‚¬
4. λ°°κ²½κ³Ό ν™˜κ²½ μ„ΈλΆ€ 사항을 ꡬ체적으둜 포함
5. 카메라 각도와 μ›€μ§μž„μ„ λͺ…μ‹œ
6. μ‘°λͺ…κ³Ό 색상을 μžμ„Ένžˆ μ„€λͺ…
7. λ³€ν™”λ‚˜ κ°‘μž‘μŠ€λŸ¬μš΄ 사건을 μžμ—°μŠ€λŸ½κ²Œ 포함
λͺ¨λ“  μ„€λͺ…은 ν•˜λ‚˜μ˜ μžμ—°μŠ€λŸ¬μš΄ λ¬Έλ‹¨μœΌλ‘œ μž‘μ„±ν•˜κ³ ,
촬영 감독이 촬영 λͺ©λ‘μ„ μ„€λͺ…ν•˜λŠ” κ²ƒμ²˜λŸΌ ꡬ체적이고 μ‹œκ°μ μœΌλ‘œ μž‘μ„±ν•˜μ„Έμš”.
200단어λ₯Ό λ„˜μ§€ μ•Šλ„λ‘ ν•˜λ˜, μ΅œλŒ€ν•œ μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜μ„Έμš”."""
system_prompt_i2v = """당신은 이미지 기반 λΉ„λ””μ˜€ 생성을 μœ„ν•œ ν”„λ‘¬ν”„νŠΈ μ „λ¬Έκ°€μž…λ‹ˆλ‹€.
주어진 ν”„λ‘¬ν”„νŠΈλ₯Ό λ‹€μŒ ꡬ쑰에 맞게 κ°œμ„ ν•΄μ£Όμ„Έμš”:
1. μ£Όμš” λ™μž‘μ„ λͺ…ν™•ν•œ ν•œ λ¬Έμž₯으둜 μ‹œμž‘
2. ꡬ체적인 λ™μž‘κ³Ό 제슀처λ₯Ό μ‹œκ°„ μˆœμ„œλŒ€λ‘œ μ„€λͺ…
3. 캐릭터/객체의 μ™Έλͺ¨λ₯Ό μƒμ„Ένžˆ λ¬˜μ‚¬
4. λ°°κ²½κ³Ό ν™˜κ²½ μ„ΈλΆ€ 사항을 ꡬ체적으둜 포함
5. 카메라 각도와 μ›€μ§μž„μ„ λͺ…μ‹œ
6. μ‘°λͺ…κ³Ό 색상을 μžμ„Ένžˆ μ„€λͺ…
7. λ³€ν™”λ‚˜ κ°‘μž‘μŠ€λŸ¬μš΄ 사건을 μžμ—°μŠ€λŸ½κ²Œ 포함
λͺ¨λ“  μ„€λͺ…은 ν•˜λ‚˜μ˜ μžμ—°μŠ€λŸ¬μš΄ λ¬Έλ‹¨μœΌλ‘œ μž‘μ„±ν•˜κ³ ,
촬영 감독이 촬영 λͺ©λ‘μ„ μ„€λͺ…ν•˜λŠ” κ²ƒμ²˜λŸΌ ꡬ체적이고 μ‹œκ°μ μœΌλ‘œ μž‘μ„±ν•˜μ„Έμš”.
200단어λ₯Ό λ„˜μ§€ μ•Šλ„λ‘ ν•˜λ˜, μ΅œλŒ€ν•œ μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜μ„Έμš”."""
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
# Initialize translation pipeline with device and clean_up settings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device,
clean_up_tokenization_spaces=True
)
# Korean text detection function
def contains_korean(text):
korean_pattern = re.compile('[γ„±-γ…Žγ…-γ…£κ°€-힣]')
return bool(korean_pattern.search(text))
def translate_korean_prompt(prompt):
"""
Translate Korean prompt to English if Korean text is detected
"""
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
print(f"Original Korean prompt: {prompt}")
print(f"Translated English prompt: {translated}")
return translated
return prompt
def enhance_prompt(prompt, type="t2v"):
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
)
enhanced_prompt = response.choices[0].message.content.strip()
print("\n=== ν”„λ‘¬ν”„νŠΈ 증강 κ²°κ³Ό ===")
print("Original Prompt:")
print(prompt)
print("\nEnhanced Prompt:")
print(enhanced_prompt)
print("========================\n")
return enhanced_prompt
except Exception as e:
print(f"Error during prompt enhancement: {e}")
return prompt
def update_prompt_t2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "t2v")
def update_prompt_i2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "i2v")
def update_prompt(prompt, enhance_toggle, type="t2v"):
if enhance_toggle:
return enhance_prompt(prompt, type)
return prompt
# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
snapshot_download(
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device=device, dtype=torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device=device, dtype=torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(device)
# State λ³€μˆ˜λ“€μ˜ μ΄ˆκΈ°ν™” μˆ˜μ •
txt2vid_current_height = gr.State(value=320)
txt2vid_current_width = gr.State(value=512)
txt2vid_current_num_frames = gr.State(value=257)
img2vid_current_height = gr.State(value=320)
img2vid_current_width = gr.State(value=512)
img2vid_current_num_frames = gr.State(value=257)
# Preset options for resolution and frame configuration
# Convert frames to seconds assuming 25 FPS
preset_options = [
{"label": "[16:9 HD] 1216x704, 1.6초", "width": 1216, "height": 704, "num_frames": 41},
{"label": "[16:9] 1088x704, 2.0초", "width": 1088, "height": 704, "num_frames": 49},
{"label": "[16:9] 1056x640, 2.3초", "width": 1056, "height": 640, "num_frames": 57},
{"label": "[16:9] 992x608, 2.6초", "width": 992, "height": 608, "num_frames": 65},
{"label": "[16:9] 896x608, 2.9초", "width": 896, "height": 608, "num_frames": 73},
{"label": "[16:9] 896x544, 3.2초", "width": 896, "height": 544, "num_frames": 81},
{"label": "[16:9] 832x544, 3.6초", "width": 832, "height": 544, "num_frames": 89},
{"label": "[16:9] 800x512, 3.9초", "width": 800, "height": 512, "num_frames": 97},
{"label": "[16:9] 768x512, 3.9초", "width": 768, "height": 512, "num_frames": 97},
{"label": "[16:9] 800x480, 4.2초", "width": 800, "height": 480, "num_frames": 105},
{"label": "[16:9] 736x480, 4.5초", "width": 736, "height": 480, "num_frames": 113},
{"label": "[3:2] 704x480, 4.8초", "width": 704, "height": 480, "num_frames": 121},
{"label": "[16:9] 704x448, 5.2초", "width": 704, "height": 448, "num_frames": 129},
{"label": "[16:9] 672x448, 5.5초", "width": 672, "height": 448, "num_frames": 137},
{"label": "[16:9] 640x416, 6.1초", "width": 640, "height": 416, "num_frames": 153},
{"label": "[16:9] 672x384, 6.4초", "width": 672, "height": 384, "num_frames": 161},
{"label": "[16:9] 640x384, 6.8초", "width": 640, "height": 384, "num_frames": 169},
{"label": "[16:9] 608x384, 7.1초", "width": 608, "height": 384, "num_frames": 177},
{"label": "[16:9] 576x384, 7.4초", "width": 576, "height": 384, "num_frames": 185},
{"label": "[16:9] 608x352, 7.7초", "width": 608, "height": 352, "num_frames": 193},
{"label": "[16:9] 576x352, 8.0초", "width": 576, "height": 352, "num_frames": 201},
{"label": "[16:9] 544x352, 8.4초", "width": 544, "height": 352, "num_frames": 209},
{"label": "[3:2] 512x352, 9.3초", "width": 512, "height": 352, "num_frames": 233},
{"label": "[16:9] 544x320, 9.6초", "width": 544, "height": 320, "num_frames": 241},
{"label": "[16:9] 512x320, 10.3초", "width": 512, "height": 320, "num_frames": 257},
]
def preset_changed(preset):
selected = next(item for item in preset_options if item["label"] == preset)
return [
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def generate_video_from_text(
prompt="",
enhance_prompt_toggle=False,
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
frame_rate=25,
seed=171198,
num_inference_steps=41,
guidance_scale=4,
height=320,
width=512,
num_frames=257,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"ν”„λ‘¬ν”„νŠΈλŠ” μ΅œμ†Œ 50자 이상이어야 ν•©λ‹ˆλ‹€. 더 μžμ„Έν•œ μ„€λͺ…을 μ œκ³΅ν•΄μ£Όμ„Έμš”.",
duration=5,
)
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"λΉ„λ””μ˜€ 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”. 였λ₯˜: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
print(images.shape)
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def generate_video_from_image(
image_path,
prompt="",
enhance_prompt_toggle=False,
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
frame_rate=25,
seed=171198,
num_inference_steps=41,
guidance_scale=4,
height=320,
width=512,
num_frames=257,
progress=gr.Progress(),
):
print("Height: ", height)
print("Width: ", width)
print("Num Frames: ", num_frames)
if len(prompt.strip()) < 50:
raise gr.Error(
"ν”„λ‘¬ν”„νŠΈλŠ” μ΅œμ†Œ 50자 이상이어야 ν•©λ‹ˆλ‹€. 더 μžμ„Έν•œ μ„€λͺ…을 μ œκ³΅ν•΄μ£Όμ„Έμš”.",
duration=5,
)
if not image_path:
raise gr.Error("μž…λ ₯ 이미지λ₯Ό μ œκ³΅ν•΄μ£Όμ„Έμš”.", duration=5)
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
media_items = (
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
except Exception as e:
raise gr.Error(
f"λΉ„λ””μ˜€ 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”. 였λ₯˜: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1000000,
step=1,
value=171198
)
inference_steps = gr.Slider(
label="4.2 Inference Steps",
minimum=1,
maximum=50,
step=1,
value=41,
visible=False
)
guidance_scale = gr.Slider(
label="4.3 Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0,
visible=False
)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=320,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=512,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=200,
step=1,
value=257,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
# Gradio Interface Definition
with gr.Blocks(theme=gr.themes.Soft()) as iface:
with gr.Tabs():
# Text to Video Tab
with gr.TabItem("ν…μŠ€νŠΈλ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°"):
with gr.Row():
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="μƒμ„±ν•˜κ³  싢은 λΉ„λ””μ˜€λ₯Ό μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
value="κ·€μ—¬μš΄ 고양이",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="ν”„λ‘¬ν”„νŠΈ κ°œμ„ ",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3초", # μ •ν™•ν•œ 라벨둜 μˆ˜μ •
label="Step 2: 해상도 프리셋 선택",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3: ν”„λ ˆμž„ 레이트",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 3: λΉ„λ””μ˜€ 생성",
variant="primary",
size="lg",
)
with gr.Column():
txt2vid_output = gr.Video(label="μƒμ„±λœ λΉ„λ””μ˜€")
# Image to Video Tab
with gr.TabItem("μ΄λ―Έμ§€λ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°"):
with gr.Row():
with gr.Column():
img2vid_image = gr.Image(
type="filepath",
label="Step 1: μž…λ ₯ 이미지 μ—…λ‘œλ“œ",
elem_id="image_upload",
)
img2vid_prompt = gr.Textbox(
label="Step 2: ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="이미지λ₯Ό μ–΄λ–»κ²Œ μ• λ‹ˆλ©”μ΄μ…˜ν™”ν• μ§€ μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
value="κ·€μ—¬μš΄ 고양이",
lines=5,
)
img2vid_enhance_toggle = Toggle(
label="ν”„λ‘¬ν”„νŠΈ 증강",
value=False,
interactive=True,
)
img2vid_negative_prompt = gr.Textbox(
label="Step 3: λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
img2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3초", # μ •ν™•ν•œ 라벨둜 μˆ˜μ •
label="Step 3: 해상도 프리셋 선택",
)
img2vid_frame_rate = gr.Slider(
label="Step 4: ν”„λ ˆμž„ 레이트",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
img2vid_advanced = create_advanced_options()
img2vid_generate = gr.Button(
"Step 4: λΉ„λ””μ˜€ 생성",
variant="primary",
size="lg",
)
with gr.Column():
img2vid_output = gr.Video(label="μƒμ„±λœ λΉ„λ””μ˜€")
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=[
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
*txt2vid_advanced[3:]
]
)
txt2vid_enhance_toggle.change(
fn=update_prompt_t2v,
inputs=[txt2vid_prompt, txt2vid_enhance_toggle],
outputs=txt2vid_prompt
)
txt2vid_generate.click(
fn=generate_video_from_text,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
*txt2vid_advanced[:3], # seed, inference_steps, guidance_scale
txt2vid_current_height, # State λ³€μˆ˜ μ°Έμ‘°
txt2vid_current_width, # State λ³€μˆ˜ μ°Έμ‘°
txt2vid_current_num_frames, # State λ³€μˆ˜ μ°Έμ‘°
],
outputs=txt2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
img2vid_preset.change(
fn=preset_changed,
inputs=[img2vid_preset],
outputs=[
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
*img2vid_advanced[3:]
]
)
img2vid_enhance_toggle.change(
fn=update_prompt_i2v,
inputs=[img2vid_prompt, img2vid_enhance_toggle],
outputs=img2vid_prompt
)
img2vid_generate.click(
fn=generate_video_from_image,
inputs=[
img2vid_image,
img2vid_prompt,
img2vid_enhance_toggle,
img2vid_negative_prompt,
img2vid_frame_rate,
*img2vid_advanced[:3], # seed, inference_steps, guidance_scale
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
],
outputs=img2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
if __name__ == "__main__":
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
share=True, show_api=False
)