ginigen-sora / scripts /to_safetensors.py
Sapir's picture
README: added inference + installation guidelines, inference clearer.
b6c994f
raw
history blame
4.55 kB
import argparse
from pathlib import Path
from typing import Dict
import safetensors.torch
import torch
import json
import shutil
def load_text_encoder(index_path: Path) -> Dict:
with open(index_path, "r") as f:
index: Dict = json.load(f)
loaded_tensors = {}
for part_file in set(index.get("weight_map", {}).values()):
tensors = safetensors.torch.load_file(
index_path.parent / part_file, device="cpu"
)
for tensor_name in tensors:
loaded_tensors[tensor_name] = tensors[tensor_name]
return loaded_tensors
def convert_unet(unet: Dict, add_prefix=True) -> Dict:
if add_prefix:
return {"model.diffusion_model." + key: value for key, value in unet.items()}
return unet
def convert_vae(vae_path: Path, add_prefix=True) -> Dict:
state_dict = torch.load(vae_path / "autoencoder.pth", weights_only=True)
stats_path = vae_path / "per_channel_statistics.json"
if stats_path.exists():
with open(stats_path, "r") as f:
data = json.load(f)
transposed_data = list(zip(*data["data"]))
data_dict = {
f"{'vae.' if add_prefix else ''}per_channel_statistics.{col}": torch.tensor(
vals
)
for col, vals in zip(data["columns"], transposed_data)
}
else:
data_dict = {}
result = {
("vae." if add_prefix else "") + key: value for key, value in state_dict.items()
}
result.update(data_dict)
return result
def convert_encoder(encoder: Dict) -> Dict:
return {
"text_encoders.t5xxl.transformer." + key: value
for key, value in encoder.items()
}
def save_config(config_src: str, config_dst: str):
shutil.copy(config_src, config_dst)
def load_vae_config(vae_path: Path) -> str:
config_path = vae_path / "config.json"
if not config_path.exists():
raise FileNotFoundError(f"VAE config file {config_path} not found.")
return str(config_path)
def main(
unet_path: str,
vae_path: str,
out_path: str,
mode: str,
unet_config_path: str = None,
scheduler_config_path: str = None,
) -> None:
unet = convert_unet(
torch.load(unet_path, weights_only=True), add_prefix=(mode == "single")
)
# Load VAE from directory and config
vae = convert_vae(Path(vae_path), add_prefix=(mode == "single"))
vae_config_path = load_vae_config(Path(vae_path))
if mode == "single":
result = {**unet, **vae}
safetensors.torch.save_file(result, out_path)
elif mode == "separate":
# Create directories for unet, vae, and scheduler
unet_dir = Path(out_path) / "unet"
vae_dir = Path(out_path) / "vae"
scheduler_dir = Path(out_path) / "scheduler"
unet_dir.mkdir(parents=True, exist_ok=True)
vae_dir.mkdir(parents=True, exist_ok=True)
scheduler_dir.mkdir(parents=True, exist_ok=True)
# Save unet and vae safetensors with the name diffusion_pytorch_model.safetensors
safetensors.torch.save_file(
unet, unet_dir / "unet_diffusion_pytorch_model.safetensors"
)
safetensors.torch.save_file(
vae, vae_dir / "vae_diffusion_pytorch_model.safetensors"
)
# Save config files for unet, vae, and scheduler
if unet_config_path:
save_config(unet_config_path, unet_dir / "config.json")
if vae_config_path:
save_config(vae_config_path, vae_dir / "config.json")
if scheduler_config_path:
save_config(scheduler_config_path, scheduler_dir / "scheduler_config.json")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--unet_path", "-u", type=str, default="unet/ema-002.pt")
parser.add_argument("--vae_path", "-v", type=str, default="vae/")
parser.add_argument("--out_path", "-o", type=str, default="xora.safetensors")
parser.add_argument(
"--mode",
"-m",
type=str,
choices=["single", "separate"],
default="single",
help="Choose 'single' for the original behavior, 'separate' to save unet and vae separately.",
)
parser.add_argument(
"--unet_config_path",
type=str,
help="Path to the UNet config file (for separate mode)",
)
parser.add_argument(
"--scheduler_config_path",
type=str,
help="Path to the Scheduler config file (for separate mode)",
)
args = parser.parse_args()
main(**args.__dict__)