Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,1229 +1,2 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from gradio_toggle import Toggle
|
3 |
-
import torch
|
4 |
-
from huggingface_hub import snapshot_download
|
5 |
-
from transformers import pipeline
|
6 |
-
|
7 |
-
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
8 |
-
from xora.models.transformers.transformer3d import Transformer3DModel
|
9 |
-
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
10 |
-
from xora.schedulers.rf import RectifiedFlowScheduler
|
11 |
-
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
|
12 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
13 |
-
from xora.utils.conditioning_method import ConditioningMethod
|
14 |
-
from pathlib import Path
|
15 |
-
import safetensors.torch
|
16 |
-
import json
|
17 |
-
import numpy as np
|
18 |
-
import cv2
|
19 |
-
from PIL import Image
|
20 |
-
import tempfile
|
21 |
import os
|
22 |
-
|
23 |
-
from openai import OpenAI
|
24 |
-
import re
|
25 |
-
import time
|
26 |
-
# Load system prompts
|
27 |
-
system_prompt_t2v = """λΉμ μ λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
|
28 |
-
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
|
29 |
-
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
|
30 |
-
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
|
31 |
-
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
|
32 |
-
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
|
33 |
-
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
|
34 |
-
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
|
35 |
-
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
|
36 |
-
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
|
37 |
-
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
|
38 |
-
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ."""
|
39 |
-
|
40 |
-
system_prompt_i2v = """λΉμ μ μ΄λ―Έμ§ κΈ°λ° λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
|
41 |
-
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
|
42 |
-
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
|
43 |
-
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
|
44 |
-
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
|
45 |
-
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
|
46 |
-
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
|
47 |
-
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
|
48 |
-
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
|
49 |
-
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
|
50 |
-
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
|
51 |
-
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ."""
|
52 |
-
|
53 |
-
# Load Hugging Face token if needed
|
54 |
-
hf_token = os.getenv("HF_TOKEN")
|
55 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
56 |
-
client = OpenAI(api_key=openai_api_key)
|
57 |
-
|
58 |
-
# Initialize translation pipeline with device and clean_up settings
|
59 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
-
translator = pipeline(
|
61 |
-
"translation",
|
62 |
-
model="Helsinki-NLP/opus-mt-ko-en",
|
63 |
-
device=device,
|
64 |
-
clean_up_tokenization_spaces=True
|
65 |
-
)
|
66 |
-
|
67 |
-
# Korean text detection function
|
68 |
-
def contains_korean(text):
|
69 |
-
korean_pattern = re.compile('[γ±-γ
γ
-γ
£κ°-ν£]')
|
70 |
-
return bool(korean_pattern.search(text))
|
71 |
-
|
72 |
-
def translate_korean_prompt(prompt, max_length=450):
|
73 |
-
"""
|
74 |
-
Translate Korean prompt to English if Korean text is detected
|
75 |
-
Split long text into chunks if necessary
|
76 |
-
"""
|
77 |
-
if not contains_korean(prompt):
|
78 |
-
return prompt
|
79 |
-
|
80 |
-
# Split long text into chunks
|
81 |
-
def split_text(text, max_length):
|
82 |
-
words = text.split()
|
83 |
-
chunks = []
|
84 |
-
current_chunk = []
|
85 |
-
current_length = 0
|
86 |
-
|
87 |
-
for word in words:
|
88 |
-
if current_length + len(word) + 1 > max_length:
|
89 |
-
chunks.append(' '.join(current_chunk))
|
90 |
-
current_chunk = [word]
|
91 |
-
current_length = len(word)
|
92 |
-
else:
|
93 |
-
current_chunk.append(word)
|
94 |
-
current_length += len(word) + 1
|
95 |
-
|
96 |
-
if current_chunk:
|
97 |
-
chunks.append(' '.join(current_chunk))
|
98 |
-
return chunks
|
99 |
-
|
100 |
-
try:
|
101 |
-
if len(prompt) > max_length:
|
102 |
-
chunks = split_text(prompt, max_length)
|
103 |
-
translated_chunks = []
|
104 |
-
|
105 |
-
for chunk in chunks:
|
106 |
-
translated = translator(chunk, max_length=512)[0]['translation_text']
|
107 |
-
translated_chunks.append(translated)
|
108 |
-
|
109 |
-
final_translation = ' '.join(translated_chunks)
|
110 |
-
else:
|
111 |
-
final_translation = translator(prompt, max_length=512)[0]['translation_text']
|
112 |
-
|
113 |
-
print(f"Original Korean prompt: {prompt}")
|
114 |
-
print(f"Translated English prompt: {final_translation}")
|
115 |
-
return final_translation
|
116 |
-
|
117 |
-
except Exception as e:
|
118 |
-
print(f"Translation error: {e}")
|
119 |
-
return prompt # Return original prompt if translation fails
|
120 |
-
|
121 |
-
def enhance_prompt(prompt, type="t2v"):
|
122 |
-
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
|
123 |
-
messages = [
|
124 |
-
{"role": "system", "content": system_prompt},
|
125 |
-
{"role": "user", "content": prompt},
|
126 |
-
]
|
127 |
-
|
128 |
-
try:
|
129 |
-
response = client.chat.completions.create(
|
130 |
-
model="gpt-4-1106-preview",
|
131 |
-
messages=messages,
|
132 |
-
max_tokens=2000,
|
133 |
-
)
|
134 |
-
enhanced_prompt = response.choices[0].message.content.strip()
|
135 |
-
|
136 |
-
print("\n=== ν둬ννΈ μ¦κ° κ²°κ³Ό ===")
|
137 |
-
print("Original Prompt:")
|
138 |
-
print(prompt)
|
139 |
-
print("\nEnhanced Prompt:")
|
140 |
-
print(enhanced_prompt)
|
141 |
-
print("========================\n")
|
142 |
-
|
143 |
-
return enhanced_prompt
|
144 |
-
except Exception as e:
|
145 |
-
print(f"Error during prompt enhancement: {e}")
|
146 |
-
return prompt
|
147 |
-
|
148 |
-
def update_prompt_t2v(prompt, enhance_toggle):
|
149 |
-
return update_prompt(prompt, enhance_toggle, "t2v")
|
150 |
-
|
151 |
-
def update_prompt_i2v(prompt, enhance_toggle):
|
152 |
-
return update_prompt(prompt, enhance_toggle, "i2v")
|
153 |
-
|
154 |
-
def update_prompt(prompt, enhance_toggle, type="t2v"):
|
155 |
-
if enhance_toggle:
|
156 |
-
return enhance_prompt(prompt, type)
|
157 |
-
return prompt
|
158 |
-
|
159 |
-
# Set model download directory within Hugging Face Spaces
|
160 |
-
model_path = "asset"
|
161 |
-
if not os.path.exists(model_path):
|
162 |
-
snapshot_download(
|
163 |
-
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
|
164 |
-
)
|
165 |
-
|
166 |
-
# Global variables to load components
|
167 |
-
vae_dir = Path(model_path) / "vae"
|
168 |
-
unet_dir = Path(model_path) / "unet"
|
169 |
-
scheduler_dir = Path(model_path) / "scheduler"
|
170 |
-
|
171 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
172 |
-
|
173 |
-
def load_vae(vae_dir):
|
174 |
-
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
175 |
-
vae_config_path = vae_dir / "config.json"
|
176 |
-
with open(vae_config_path, "r") as f:
|
177 |
-
vae_config = json.load(f)
|
178 |
-
vae = CausalVideoAutoencoder.from_config(vae_config)
|
179 |
-
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
180 |
-
vae.load_state_dict(vae_state_dict)
|
181 |
-
return vae.to(device=device, dtype=torch.bfloat16)
|
182 |
-
|
183 |
-
def load_unet(unet_dir):
|
184 |
-
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
185 |
-
unet_config_path = unet_dir / "config.json"
|
186 |
-
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
187 |
-
transformer = Transformer3DModel.from_config(transformer_config)
|
188 |
-
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
189 |
-
transformer.load_state_dict(unet_state_dict, strict=True)
|
190 |
-
return transformer.to(device=device, dtype=torch.bfloat16)
|
191 |
-
|
192 |
-
def load_scheduler(scheduler_dir):
|
193 |
-
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
194 |
-
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
195 |
-
return RectifiedFlowScheduler.from_config(scheduler_config)
|
196 |
-
|
197 |
-
def center_crop_and_resize(frame, target_height, target_width):
|
198 |
-
# State κ°μ²΄μΈ κ²½μ° value κ°μ κ°μ Έμ΄
|
199 |
-
if isinstance(target_height, gr.State):
|
200 |
-
target_height = target_height.value
|
201 |
-
if isinstance(target_width, gr.State):
|
202 |
-
target_width = target_width.value
|
203 |
-
|
204 |
-
h, w, _ = frame.shape
|
205 |
-
aspect_ratio_target = target_width / target_height
|
206 |
-
aspect_ratio_frame = w / h
|
207 |
-
|
208 |
-
if aspect_ratio_frame > aspect_ratio_target:
|
209 |
-
new_width = int(h * aspect_ratio_target)
|
210 |
-
x_start = (w - new_width) // 2
|
211 |
-
frame_cropped = frame[:, x_start : x_start + new_width]
|
212 |
-
else:
|
213 |
-
new_height = int(w / aspect_ratio_target)
|
214 |
-
y_start = (h - new_height) // 2
|
215 |
-
frame_cropped = frame[y_start : y_start + new_height, :]
|
216 |
-
|
217 |
-
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
218 |
-
return frame_resized
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
|
223 |
-
image = Image.open(image_path).convert("RGB")
|
224 |
-
image_np = np.array(image)
|
225 |
-
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
|
226 |
-
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
|
227 |
-
frame_tensor = (frame_tensor / 127.5) - 1.0
|
228 |
-
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
229 |
-
|
230 |
-
# Load models
|
231 |
-
vae = load_vae(vae_dir)
|
232 |
-
unet = load_unet(unet_dir)
|
233 |
-
scheduler = load_scheduler(scheduler_dir)
|
234 |
-
patchifier = SymmetricPatchifier(patch_size=1)
|
235 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
236 |
-
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
|
237 |
-
).to(device)
|
238 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
239 |
-
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
240 |
-
)
|
241 |
-
|
242 |
-
pipeline = XoraVideoPipeline(
|
243 |
-
transformer=unet,
|
244 |
-
patchifier=patchifier,
|
245 |
-
text_encoder=text_encoder,
|
246 |
-
tokenizer=tokenizer,
|
247 |
-
scheduler=scheduler,
|
248 |
-
vae=vae,
|
249 |
-
).to(device)
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
# Preset options for resolution and frame configuration
|
254 |
-
# Convert frames to seconds assuming 25 FPS
|
255 |
-
preset_options = [
|
256 |
-
{"label": "[16:9 HD] 1216x704, 1.6μ΄", "width": 1216, "height": 704, "num_frames": 41},
|
257 |
-
{"label": "[16:9] 1088x704, 2.0μ΄", "width": 1088, "height": 704, "num_frames": 49},
|
258 |
-
{"label": "[16:9] 1056x640, 2.3μ΄", "width": 1056, "height": 640, "num_frames": 57},
|
259 |
-
{"label": "[16:9] 896x608, 2.9μ΄", "width": 896, "height": 608, "num_frames": 73},
|
260 |
-
{"label": "[16:9] 800x512, 3.9μ΄", "width": 800, "height": 512, "num_frames": 97},
|
261 |
-
{"label": "[16:9] 736x480, 4.5μ΄", "width": 736, "height": 480, "num_frames": 113},
|
262 |
-
{"label": "[16:9] 704x448, 5.2μ΄", "width": 704, "height": 448, "num_frames": 129},
|
263 |
-
{"label": "[16:9] 608x352, 7.7μ΄", "width": 608, "height": 352, "num_frames": 193},
|
264 |
-
{"label": "[16:9] 576x352, 8.0μ΄", "width": 576, "height": 352, "num_frames": 201},
|
265 |
-
{"label": "[16:9] 544x320, 9.6μ΄", "width": 544, "height": 320, "num_frames": 241},
|
266 |
-
{"label": "[16:9] 512x320, 10.3μ΄", "width": 512, "height": 320, "num_frames": 257},
|
267 |
-
{"label": "[3:2] 704x480, 4.8μ΄", "width": 704, "height": 480, "num_frames": 121},
|
268 |
-
{"label": "[3:2] 512x352, 9.3μ΄", "width": 512, "height": 352, "num_frames": 233},
|
269 |
-
{"label": "[1:1] 704x704, 2.3μ΄", "width": 704, "height": 704, "num_frames": 57},
|
270 |
-
{"label": "[9:16] 608x1088, 2.0μ΄", "width": 608, "height": 1088, "num_frames": 49},
|
271 |
-
{"label": "[9:16] 448x800, 4.2μ΄", "width": 448, "height": 800, "num_frames": 105},
|
272 |
-
]
|
273 |
-
|
274 |
-
def preset_changed(preset):
|
275 |
-
selected = next((item for item in preset_options if item["label"] == preset), None)
|
276 |
-
if selected is None:
|
277 |
-
raise gr.Error("Invalid preset selected")
|
278 |
-
return [
|
279 |
-
gr.State(value=selected["height"]),
|
280 |
-
gr.State(value=selected["width"]),
|
281 |
-
gr.State(value=selected["num_frames"]),
|
282 |
-
gr.update(visible=False),
|
283 |
-
gr.update(visible=False),
|
284 |
-
gr.update(visible=False),
|
285 |
-
]
|
286 |
-
|
287 |
-
def generate_video_from_text(
|
288 |
-
prompt,
|
289 |
-
enhance_prompt_toggle,
|
290 |
-
negative_prompt,
|
291 |
-
frame_rate,
|
292 |
-
seed,
|
293 |
-
num_inference_steps,
|
294 |
-
guidance_scale,
|
295 |
-
height,
|
296 |
-
width,
|
297 |
-
num_frames,
|
298 |
-
progress=gr.Progress(),
|
299 |
-
):
|
300 |
-
# State κ°μ²΄μ value κ°μ κ°μ Έμ΄
|
301 |
-
height = height.value if isinstance(height, gr.State) else height
|
302 |
-
width = width.value if isinstance(width, gr.State) else width
|
303 |
-
num_frames = num_frames.value if isinstance(num_frames, gr.State) else num_frames
|
304 |
-
|
305 |
-
if len(prompt.strip()) < 50:
|
306 |
-
raise gr.Error(
|
307 |
-
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ
μ μ 곡ν΄μ£ΌμΈμ.",
|
308 |
-
duration=5,
|
309 |
-
)
|
310 |
-
|
311 |
-
# ν둬ννΈ κ°μ μ΄ νμ±νλ κ²½μ°
|
312 |
-
if enhance_prompt_toggle:
|
313 |
-
prompt = enhance_prompt(prompt, "t2v")
|
314 |
-
|
315 |
-
# Translate Korean prompts to English
|
316 |
-
prompt = translate_korean_prompt(prompt)
|
317 |
-
negative_prompt = translate_korean_prompt(negative_prompt)
|
318 |
-
|
319 |
-
# κΈ°λ³Έκ° μ€μ
|
320 |
-
height = height or 320
|
321 |
-
width = width or 512
|
322 |
-
num_frames = num_frames or 257
|
323 |
-
frame_rate = frame_rate or 25
|
324 |
-
seed = seed or 171198
|
325 |
-
num_inference_steps = num_inference_steps or 41
|
326 |
-
guidance_scale = guidance_scale or 4.0
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
sample = {
|
331 |
-
"prompt": prompt,
|
332 |
-
"prompt_attention_mask": None,
|
333 |
-
"negative_prompt": negative_prompt,
|
334 |
-
"negative_prompt_attention_mask": None,
|
335 |
-
"media_items": None,
|
336 |
-
}
|
337 |
-
|
338 |
-
generator = torch.Generator(device="cpu").manual_seed(seed)
|
339 |
-
|
340 |
-
def gradio_progress_callback(self, step, timestep, kwargs):
|
341 |
-
progress((step + 1) / num_inference_steps)
|
342 |
-
|
343 |
-
try:
|
344 |
-
with torch.no_grad():
|
345 |
-
images = pipeline(
|
346 |
-
num_inference_steps=num_inference_steps,
|
347 |
-
num_images_per_prompt=1,
|
348 |
-
guidance_scale=guidance_scale,
|
349 |
-
generator=generator,
|
350 |
-
output_type="pt",
|
351 |
-
height=height,
|
352 |
-
width=width,
|
353 |
-
num_frames=num_frames,
|
354 |
-
frame_rate=frame_rate,
|
355 |
-
**sample,
|
356 |
-
is_video=True,
|
357 |
-
vae_per_channel_normalize=True,
|
358 |
-
conditioning_method=ConditioningMethod.UNCONDITIONAL,
|
359 |
-
mixed_precision=True,
|
360 |
-
callback_on_step_end=gradio_progress_callback,
|
361 |
-
).images
|
362 |
-
except Exception as e:
|
363 |
-
raise gr.Error(
|
364 |
-
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}",
|
365 |
-
duration=5,
|
366 |
-
)
|
367 |
-
finally:
|
368 |
-
torch.cuda.empty_cache()
|
369 |
-
gc.collect()
|
370 |
-
|
371 |
-
output_path = tempfile.mktemp(suffix=".mp4")
|
372 |
-
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
373 |
-
video_np = (video_np * 255).astype(np.uint8)
|
374 |
-
height, width = video_np.shape[1:3]
|
375 |
-
out = cv2.VideoWriter(
|
376 |
-
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
377 |
-
)
|
378 |
-
for frame in video_np[..., ::-1]:
|
379 |
-
out.write(frame)
|
380 |
-
out.release()
|
381 |
-
del images
|
382 |
-
del video_np
|
383 |
-
torch.cuda.empty_cache()
|
384 |
-
return output_path
|
385 |
-
|
386 |
-
def generate_video_from_image(
|
387 |
-
image_path,
|
388 |
-
prompt,
|
389 |
-
enhance_prompt_toggle,
|
390 |
-
negative_prompt,
|
391 |
-
frame_rate,
|
392 |
-
seed,
|
393 |
-
num_inference_steps,
|
394 |
-
guidance_scale,
|
395 |
-
height,
|
396 |
-
width,
|
397 |
-
num_frames,
|
398 |
-
progress=gr.Progress(),
|
399 |
-
):
|
400 |
-
# State κ°μ²΄μ value κ°μ κ°μ Έμ΄
|
401 |
-
height = height.value if isinstance(height, gr.State) else height
|
402 |
-
width = width.value if isinstance(width, gr.State) else width
|
403 |
-
num_frames = num_frames.value if isinstance(num_frames, gr.State) else num_frames
|
404 |
-
|
405 |
-
if not image_path:
|
406 |
-
raise gr.Error("μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ 곡ν΄μ£ΌμΈμ.", duration=5)
|
407 |
-
|
408 |
-
if len(prompt.strip()) < 50:
|
409 |
-
raise gr.Error(
|
410 |
-
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ
μ μ 곡ν΄μ£ΌμΈμ.",
|
411 |
-
duration=5,
|
412 |
-
)
|
413 |
-
|
414 |
-
# ν둬ννΈ κ°μ μ΄ νμ±νλ κ²½μ°
|
415 |
-
if enhance_prompt_toggle:
|
416 |
-
prompt = enhance_prompt(prompt, "i2v")
|
417 |
-
|
418 |
-
# Translate Korean prompts to English
|
419 |
-
prompt = translate_korean_prompt(prompt)
|
420 |
-
negative_prompt = translate_korean_prompt(negative_prompt)
|
421 |
-
|
422 |
-
# κΈ°λ³Έκ° μ€μ
|
423 |
-
height = height or 320
|
424 |
-
width = width or 512
|
425 |
-
num_frames = num_frames or 257
|
426 |
-
frame_rate = frame_rate or 25
|
427 |
-
seed = seed or 171198
|
428 |
-
num_inference_steps = num_inference_steps or 41
|
429 |
-
guidance_scale = guidance_scale or 4.0
|
430 |
-
|
431 |
-
# μ΄λ―Έμ§ λ‘λ λ° μ μ²λ¦¬
|
432 |
-
media_items = (
|
433 |
-
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
434 |
-
)
|
435 |
-
|
436 |
-
sample = {
|
437 |
-
"prompt": prompt,
|
438 |
-
"prompt_attention_mask": None,
|
439 |
-
"negative_prompt": negative_prompt,
|
440 |
-
"negative_prompt_attention_mask": None,
|
441 |
-
"media_items": media_items,
|
442 |
-
}
|
443 |
-
|
444 |
-
generator = torch.Generator(device="cpu").manual_seed(seed)
|
445 |
-
|
446 |
-
def gradio_progress_callback(self, step, timestep, kwargs):
|
447 |
-
progress((step + 1) / num_inference_steps)
|
448 |
-
|
449 |
-
try:
|
450 |
-
with torch.no_grad():
|
451 |
-
images = pipeline(
|
452 |
-
num_inference_steps=num_inference_steps,
|
453 |
-
num_images_per_prompt=1,
|
454 |
-
guidance_scale=guidance_scale,
|
455 |
-
generator=generator,
|
456 |
-
output_type="pt",
|
457 |
-
height=height,
|
458 |
-
width=width,
|
459 |
-
num_frames=num_frames,
|
460 |
-
frame_rate=frame_rate,
|
461 |
-
**sample,
|
462 |
-
is_video=True,
|
463 |
-
vae_per_channel_normalize=True,
|
464 |
-
conditioning_method=ConditioningMethod.FIRST_FRAME,
|
465 |
-
mixed_precision=True,
|
466 |
-
callback_on_step_end=gradio_progress_callback,
|
467 |
-
).images
|
468 |
-
|
469 |
-
output_path = tempfile.mktemp(suffix=".mp4")
|
470 |
-
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
471 |
-
video_np = (video_np * 255).astype(np.uint8)
|
472 |
-
height, width = video_np.shape[1:3]
|
473 |
-
out = cv2.VideoWriter(
|
474 |
-
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
475 |
-
)
|
476 |
-
for frame in video_np[..., ::-1]:
|
477 |
-
out.write(frame)
|
478 |
-
out.release()
|
479 |
-
|
480 |
-
except Exception as e:
|
481 |
-
raise gr.Error(
|
482 |
-
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}",
|
483 |
-
duration=5,
|
484 |
-
)
|
485 |
-
|
486 |
-
finally:
|
487 |
-
torch.cuda.empty_cache()
|
488 |
-
gc.collect()
|
489 |
-
if 'images' in locals():
|
490 |
-
del images
|
491 |
-
if 'video_np' in locals():
|
492 |
-
del video_np
|
493 |
-
if 'media_items' in locals():
|
494 |
-
del media_items
|
495 |
-
|
496 |
-
return output_path
|
497 |
-
|
498 |
-
def create_advanced_options():
|
499 |
-
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
500 |
-
seed = gr.Slider(
|
501 |
-
label="Seed",
|
502 |
-
minimum=0,
|
503 |
-
maximum=1000000,
|
504 |
-
step=1,
|
505 |
-
value=171198
|
506 |
-
)
|
507 |
-
inference_steps = gr.Slider(
|
508 |
-
label="4.2 Inference Steps",
|
509 |
-
minimum=1,
|
510 |
-
maximum=50,
|
511 |
-
step=1,
|
512 |
-
value=41,
|
513 |
-
visible=False
|
514 |
-
)
|
515 |
-
guidance_scale = gr.Slider(
|
516 |
-
label="4.3 Guidance Scale",
|
517 |
-
minimum=1.0,
|
518 |
-
maximum=5.0,
|
519 |
-
step=0.1,
|
520 |
-
value=4.0,
|
521 |
-
visible=False
|
522 |
-
)
|
523 |
-
height_slider = gr.Slider(
|
524 |
-
label="4.4 Height",
|
525 |
-
minimum=256,
|
526 |
-
maximum=1024,
|
527 |
-
step=64,
|
528 |
-
value=320,
|
529 |
-
visible=False,
|
530 |
-
)
|
531 |
-
width_slider = gr.Slider(
|
532 |
-
label="4.5 Width",
|
533 |
-
minimum=256,
|
534 |
-
maximum=1024,
|
535 |
-
step=64,
|
536 |
-
value=512,
|
537 |
-
visible=False,
|
538 |
-
)
|
539 |
-
num_frames_slider = gr.Slider(
|
540 |
-
label="4.5 Number of Frames",
|
541 |
-
minimum=1,
|
542 |
-
maximum=200,
|
543 |
-
step=1,
|
544 |
-
value=257,
|
545 |
-
visible=False,
|
546 |
-
)
|
547 |
-
|
548 |
-
return [
|
549 |
-
seed,
|
550 |
-
inference_steps,
|
551 |
-
guidance_scale,
|
552 |
-
height_slider,
|
553 |
-
width_slider,
|
554 |
-
num_frames_slider,
|
555 |
-
]
|
556 |
-
|
557 |
-
system_prompt_scenario = """λΉμ μ μμ μ€ν¬λ¦½νΈμ λ§λ λ°°κ²½ μμμ μμ±νκΈ° μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
|
558 |
-
μ£Όμ΄μ§ μ€ν¬λ¦½νΈμ λΆμκΈ°μ λ§₯λ½μ μκ°μ λ°°κ²½μΌλ‘ νννλ, λ€μ μμΉμ λ°λμ μ€μνμΈμ:
|
559 |
-
|
560 |
-
1. οΏ½οΏ½οΏ½νμ΄λ μλΉμ€λ₯Ό μ§μ μ μΌλ‘ λ¬μ¬νμ§ λ§ κ²
|
561 |
-
2. μ€ν¬λ¦½νΈμ κ°μ±κ³Ό ν€μ€λ§€λλ₯Ό νννλ λ°°κ²½ μμμ μ§μ€ν κ²
|
562 |
-
3. 5κ° μΉμ
μ΄ νλμ μ΄μΌκΈ°μ²λΌ μμ°μ€λ½κ² μ°κ²°λλλ‘ ν κ²
|
563 |
-
4. μΆμμ μ΄κ³ μμ μ μΈ μκ° ννμ νμ©ν κ²
|
564 |
-
|
565 |
-
κ° μΉμ
λ³ ν둬ννΈ μμ± κ°μ΄λ:
|
566 |
-
1. λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬
|
567 |
-
2. λ¬Έμ μ κΈ°: κΈ΄μ₯κ°μ΄λ κ°λ±μ μμνλ λΆμκΈ° μλ λ°°κ²½
|
568 |
-
3. ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν
|
569 |
-
4. λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½
|
570 |
-
5. κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½
|
571 |
-
|
572 |
-
λͺ¨λ μΉμ
μ΄ μΌκ΄λ μ€νμΌκ³Ό ν€μ μ μ§νλ©΄μλ μμ°μ€λ½κ² μ΄μ΄μ§λλ‘ κ΅¬μ±νμΈμ.
|
573 |
-
|
574 |
-
κ° μΉμ
μ ν둬ννΈ μμ±μ λ°λμ λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
|
575 |
-
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
|
576 |
-
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
|
577 |
-
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
|
578 |
-
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
|
579 |
-
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
|
580 |
-
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
|
581 |
-
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
|
582 |
-
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
|
583 |
-
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
|
584 |
-
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ.
|
585 |
-
|
586 |
-
"""
|
587 |
-
|
588 |
-
|
589 |
-
def analyze_scenario(scenario):
|
590 |
-
"""μλ리μ€λ₯Ό λΆμνμ¬ κ° μΉμ
λ³ λ°°κ²½ μμμ© ν둬ννΈ μμ±"""
|
591 |
-
try:
|
592 |
-
# κ° μΉμ
λ³ ν둬ννΈ μμ±μ μν λ©μμ§ κ΅¬μ±
|
593 |
-
section_prompts = []
|
594 |
-
|
595 |
-
for section_num in range(1, 6):
|
596 |
-
section_descriptions = {
|
597 |
-
1: "λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬",
|
598 |
-
2: "ν₯λ―Έ μ λ°: κΈ΄μ₯κ°μ΄λ κ°λ±μ μμνλ λΆμκΈ° μλ λ°°κ²½",
|
599 |
-
3: "ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν",
|
600 |
-
4: "λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½",
|
601 |
-
5: "κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½"
|
602 |
-
}
|
603 |
-
|
604 |
-
messages = [
|
605 |
-
{"role": "system", "content": system_prompt_scenario},
|
606 |
-
{"role": "user", "content": f"""
|
607 |
-
λ€μ μ€ν¬λ¦½νΈμ {section_num}λ²μ§Έ μΉμ
({section_descriptions[section_num]})μ λν
|
608 |
-
λ°°κ²½ μμ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ.
|
609 |
-
|
610 |
-
μ€ν¬λ¦½νΈ:
|
611 |
-
{scenario}
|
612 |
-
|
613 |
-
μ£Όμμ¬ν:
|
614 |
-
1. ν΄λΉ μΉμ
μ νΉμ±({section_descriptions[section_num]})μ λ§λ λΆμκΈ°μ ν€μ λ°μνμΈμ.
|
615 |
-
2. μ§μ μ μΈ μ ν/μλΉμ€ λ¬μ¬λ νΌνκ³ , κ°μ±μ μ΄κ³ μμ μ μΈ λ°°κ²½ μμμ μ§μ€νμΈμ.
|
616 |
-
3. λ€μ ꡬ쑰λ₯Ό λ°λμ ν¬ν¨νμΈμ:
|
617 |
-
- μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
|
618 |
-
- ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
|
619 |
-
- λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
|
620 |
-
- μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
|
621 |
-
- μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
|
622 |
-
- λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨"""}
|
623 |
-
]
|
624 |
-
|
625 |
-
response = client.chat.completions.create(
|
626 |
-
model="gpt-4-1106-preview",
|
627 |
-
messages=messages,
|
628 |
-
max_tokens=1000,
|
629 |
-
temperature=0.7
|
630 |
-
)
|
631 |
-
|
632 |
-
section_prompt = response.choices[0].message.content.strip()
|
633 |
-
section_prompts.append(f"{section_num}. {section_prompt}")
|
634 |
-
|
635 |
-
# API μμ² μ¬μ΄μ 짧μ λλ μ΄ μΆκ°
|
636 |
-
time.sleep(1)
|
637 |
-
|
638 |
-
return section_prompts
|
639 |
-
|
640 |
-
except Exception as e:
|
641 |
-
print(f"Error during scenario analysis: {e}")
|
642 |
-
return ["Error occurred during analysis"] * 5
|
643 |
-
|
644 |
-
def generate_section_video(prompt, preset, section_number=1, base_seed=171198, progress=gr.Progress()):
|
645 |
-
"""κ° μΉμ
μ λΉλμ€ μμ±"""
|
646 |
-
try:
|
647 |
-
if not prompt or len(prompt.strip()) < 50:
|
648 |
-
raise gr.Error("ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€.")
|
649 |
-
|
650 |
-
if not preset:
|
651 |
-
raise gr.Error("ν΄μλ ν리μ
μ μ νν΄μ£ΌμΈμ.")
|
652 |
-
|
653 |
-
selected = next((item for item in preset_options if item["label"] == preset), None)
|
654 |
-
if not selected:
|
655 |
-
raise gr.Error("μ¬λ°λ₯΄μ§ μμ ν리μ
μ
λλ€.")
|
656 |
-
|
657 |
-
section_seed = base_seed + section_number
|
658 |
-
|
659 |
-
return generate_video_from_text(
|
660 |
-
prompt=prompt,
|
661 |
-
enhance_prompt_toggle=False, # μΉμ
μμ±μλ ν둬ννΈ μ¦κ° λΉνμ±ν
|
662 |
-
negative_prompt="low quality, worst quality, deformed, distorted, warped",
|
663 |
-
frame_rate=25,
|
664 |
-
seed=section_seed,
|
665 |
-
num_inference_steps=41,
|
666 |
-
guidance_scale=4.0,
|
667 |
-
height=selected["height"],
|
668 |
-
width=selected["width"],
|
669 |
-
num_frames=selected["num_frames"],
|
670 |
-
progress=progress
|
671 |
-
)
|
672 |
-
except Exception as e:
|
673 |
-
print(f"Error in section {section_number}: {e}")
|
674 |
-
raise gr.Error(f"μΉμ
{section_number} μμ± μ€ μ€λ₯: {str(e)}")
|
675 |
-
finally:
|
676 |
-
torch.cuda.empty_cache()
|
677 |
-
gc.collect()
|
678 |
-
|
679 |
-
def generate_single_section_prompt(scenario, section_number):
|
680 |
-
"""κ°λ³ μΉμ
μ λν ν둬ννΈ μμ±"""
|
681 |
-
section_descriptions = {
|
682 |
-
1: "λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬",
|
683 |
-
2: "ν₯λ―Έ μ λ°: ν₯λ―Έλ₯Ό μ λ°νκ³ κΈ°λκ°μ μ¦νμν€λ λ°°κ²½",
|
684 |
-
3: "ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν",
|
685 |
-
4: "λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½",
|
686 |
-
5: "κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½"
|
687 |
-
}
|
688 |
-
|
689 |
-
messages = [
|
690 |
-
{"role": "system", "content": system_prompt_scenario},
|
691 |
-
{"role": "user", "content": f"""
|
692 |
-
λ€μ μ€ν¬λ¦½νΈμ {section_number}λ²μ§Έ μΉμ
({section_descriptions[section_number]})μ λν
|
693 |
-
λ°°κ²½ μμ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ.
|
694 |
-
|
695 |
-
μ€ν¬λ¦½νΈ:
|
696 |
-
{scenario}
|
697 |
-
|
698 |
-
μ£Όμμ¬ν:
|
699 |
-
1. ν΄λΉ μΉμ
μ νΉμ±({section_descriptions[section_number]})μ λ§λ λΆμκΈ°μ ν€μ λ°μνμΈμ.
|
700 |
-
2. μ§μ μ μΈ μ ν/μλΉμ€ λ¬μ¬λ νΌνκ³ , κ°μ±μ μ΄κ³ μμ μ μΈ λ°°κ²½ μμμ μ§μ€νμΈμ.
|
701 |
-
3. λ€μ ꡬ쑰λ₯Ό λ°λμ ν¬ν¨νμΈμ:
|
702 |
-
- μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
|
703 |
-
- ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
|
704 |
-
- λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
|
705 |
-
- μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
|
706 |
-
- μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
|
707 |
-
- λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨"""}
|
708 |
-
]
|
709 |
-
|
710 |
-
try:
|
711 |
-
response = client.chat.completions.create(
|
712 |
-
model="gpt-4-1106-preview",
|
713 |
-
messages=messages,
|
714 |
-
max_tokens=1000, # ν ν° μ μ¦κ°
|
715 |
-
temperature=0.7
|
716 |
-
)
|
717 |
-
generated_prompt = response.choices[0].message.content.strip()
|
718 |
-
return f"{section_number}. {generated_prompt}"
|
719 |
-
except Exception as e:
|
720 |
-
print(f"Error during prompt generation for section {section_number}: {e}")
|
721 |
-
return f"Error occurred during prompt generation for section {section_number}"
|
722 |
-
|
723 |
-
|
724 |
-
# λΉλμ€ κ²°ν© ν¨μ μΆκ°
|
725 |
-
def combine_videos(video_paths, output_path):
|
726 |
-
"""μ¬λ¬ λΉλμ€λ₯Ό νλλ‘ κ²°ν©"""
|
727 |
-
if not all(video_paths):
|
728 |
-
raise gr.Error("λͺ¨λ μΉμ
μ μμμ΄ μμ±λμ΄μΌ ν©λλ€.")
|
729 |
-
|
730 |
-
try:
|
731 |
-
# 첫 λ²μ§Έ λΉλμ€μ μμ± κ°μ Έμ€κΈ°
|
732 |
-
cap = cv2.VideoCapture(video_paths[0])
|
733 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
734 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
735 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
736 |
-
cap.release()
|
737 |
-
|
738 |
-
# μΆλ ₯ λΉλμ€ μ€μ
|
739 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
740 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
741 |
-
|
742 |
-
# κ° λΉλμ€ μμ°¨μ μΌλ‘ κ²°ν©
|
743 |
-
for video_path in video_paths:
|
744 |
-
if video_path and os.path.exists(video_path):
|
745 |
-
cap = cv2.VideoCapture(video_path)
|
746 |
-
while True:
|
747 |
-
ret, frame = cap.read()
|
748 |
-
if not ret:
|
749 |
-
break
|
750 |
-
out.write(frame)
|
751 |
-
cap.release()
|
752 |
-
|
753 |
-
out.release()
|
754 |
-
return output_path
|
755 |
-
except Exception as e:
|
756 |
-
raise gr.Error(f"λΉλμ€ κ²°ν© μ€ μ€λ₯ λ°μ: {e}")
|
757 |
-
|
758 |
-
def merge_section_videos(section1, section2, section3, section4, section5):
|
759 |
-
"""μΉμ
λΉλμ€λ€μ νλλ‘ κ²°ν©"""
|
760 |
-
videos = []
|
761 |
-
|
762 |
-
# κ° μΉμ
λΉλμ€ νμΈ λ° μ²λ¦¬
|
763 |
-
for i, video_path in enumerate([section1, section2, section3, section4, section5], 1):
|
764 |
-
if video_path:
|
765 |
-
if os.path.exists(video_path):
|
766 |
-
try:
|
767 |
-
# λΉλμ€ νμΌ κ²μ¦
|
768 |
-
cap = cv2.VideoCapture(video_path)
|
769 |
-
if cap.isOpened():
|
770 |
-
videos.append(video_path)
|
771 |
-
cap.release()
|
772 |
-
else:
|
773 |
-
raise gr.Error(f"μΉμ
{i}μ μμ νμΌμ΄ μμλμκ±°λ μ½μ μ μμ΅λλ€.")
|
774 |
-
except Exception as e:
|
775 |
-
raise gr.Error(f"μΉμ
{i} μμ μ²λ¦¬ μ€ μ€λ₯: {str(e)}")
|
776 |
-
else:
|
777 |
-
raise gr.Error(f"μΉμ
{i}μ μμ νμΌμ μ°Ύμ μ μμ΅λλ€.")
|
778 |
-
else:
|
779 |
-
raise gr.Error(f"μΉμ
{i}μ μμμ΄ μμ΅λλ€.")
|
780 |
-
|
781 |
-
if not videos:
|
782 |
-
raise gr.Error("κ²°ν©ν μμμ΄ μμ΅λλ€.")
|
783 |
-
|
784 |
-
try:
|
785 |
-
output_path = tempfile.mktemp(suffix=".mp4")
|
786 |
-
|
787 |
-
# 첫 λ²μ§Έ λΉλμ€μ μμ± κ°μ Έμ€κΈ°
|
788 |
-
cap = cv2.VideoCapture(videos[0])
|
789 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
790 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
791 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
792 |
-
cap.release()
|
793 |
-
|
794 |
-
# μΆλ ₯ λΉλμ€ μ€μ
|
795 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
796 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
797 |
-
|
798 |
-
# κ° λΉλμ€ μμ°¨μ μΌλ‘ κ²°ν©
|
799 |
-
for video_path in videos:
|
800 |
-
cap = cv2.VideoCapture(video_path)
|
801 |
-
while True:
|
802 |
-
ret, frame = cap.read()
|
803 |
-
if not ret:
|
804 |
-
break
|
805 |
-
# νλ μ ν¬κΈ°κ° λ€λ₯Έ κ²½μ° λ¦¬μ¬μ΄μ¦
|
806 |
-
if frame.shape[:2] != (height, width):
|
807 |
-
frame = cv2.resize(frame, (width, height))
|
808 |
-
out.write(frame)
|
809 |
-
cap.release()
|
810 |
-
|
811 |
-
out.release()
|
812 |
-
print(f"Successfully merged {len(videos)} videos")
|
813 |
-
return output_path
|
814 |
-
|
815 |
-
except Exception as e:
|
816 |
-
raise gr.Error(f"λΉλμ€ κ²°ν© μ€ μ€λ₯ λ°μ: {e}")
|
817 |
-
|
818 |
-
def generate_script(topic):
|
819 |
-
"""μ£Όμ μ λ§λ μ€ν¬λ¦½νΈ μμ±"""
|
820 |
-
if not topic:
|
821 |
-
return "μ£Όμ λ₯Ό μ
λ ₯ν΄μ£ΌμΈμ."
|
822 |
-
|
823 |
-
messages = [
|
824 |
-
{"role": "system", "content": """λΉμ μ μμ μ€ν¬λ¦½νΈ μμ± μ λ¬Έκ°μ
λλ€.
|
825 |
-
μ£Όμ΄μ§ μ£Όμ λ‘ λ€μ ꡬ쑰μ λ§λ 5κ° μΉμ
μ μ€ν¬λ¦½νΈλ₯Ό μμ±ν΄μ£ΌμΈμ:
|
826 |
-
|
827 |
-
1. λ°°κ²½ λ° νμμ±: μ£Όμ μκ°μ μμ²μμ ν₯λ―Έ μ λ°
|
828 |
-
2. ν₯λ―Έ μ λ°: ꡬ체μ μΈ λ΄μ© μ κ°μ νΈκΈ°μ¬ μκ·Ή
|
829 |
-
3. ν΄κ²°μ±
μ μ: ν΅μ¬ λ΄μ©κ³Ό ν΄κ²°λ°©μ μ μ
|
830 |
-
4. λ³Έλ‘ : μμΈν μ€λͺ
κ³Ό μ₯μ λΆκ°
|
831 |
-
5. κ²°λ‘ : ν΅μ¬ λ©μμ§ κ°μ‘°μ νλ μ λ
|
832 |
-
|
833 |
-
κ° μΉμ
μ μμ°μ€λ½κ² μ°κ²°λμ΄μΌ νλ©°,
|
834 |
-
μ 체μ μΌλ‘ μΌκ΄λ ν€κ³Ό λΆμκΈ°λ₯Ό μ μ§νλ©΄μλ
|
835 |
-
μμ²μμ κ΄μ¬μ λκΉμ§ μ μ§ν μ μλλ‘ μμ±ν΄μ£ΌμΈμ."""},
|
836 |
-
{"role": "user", "content": f"λ€μ μ£Όμ λ‘ μμ μ€ν¬λ¦½νΈλ₯Ό μμ±ν΄μ£ΌμΈμ: {topic}"}
|
837 |
-
]
|
838 |
-
|
839 |
-
try:
|
840 |
-
response = client.chat.completions.create(
|
841 |
-
model="gpt-4-1106-preview",
|
842 |
-
messages=messages,
|
843 |
-
max_tokens=2000,
|
844 |
-
temperature=0.7
|
845 |
-
)
|
846 |
-
return response.choices[0].message.content.strip()
|
847 |
-
except Exception as e:
|
848 |
-
print(f"Error during script generation: {e}")
|
849 |
-
return "μ€ν¬λ¦½νΈ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€."
|
850 |
-
|
851 |
-
|
852 |
-
def cleanup():
|
853 |
-
"""λ©λͺ¨λ¦¬ μ 리 ν¨μ"""
|
854 |
-
torch.cuda.empty_cache()
|
855 |
-
gc.collect()
|
856 |
-
|
857 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as iface:
|
858 |
-
# State λ³μλ€μ μ΄κΈ°ν
|
859 |
-
txt2vid_current_height = gr.State(value=320)
|
860 |
-
txt2vid_current_width = gr.State(value=512)
|
861 |
-
txt2vid_current_num_frames = gr.State(value=257)
|
862 |
-
|
863 |
-
img2vid_current_height = gr.State(value=320)
|
864 |
-
img2vid_current_width = gr.State(value=512)
|
865 |
-
img2vid_current_num_frames = gr.State(value=257)
|
866 |
-
|
867 |
-
with gr.Tabs():
|
868 |
-
# Text to Video Tab
|
869 |
-
with gr.TabItem("ν
μ€νΈλ‘ λΉλμ€ λ§λ€κΈ°"):
|
870 |
-
with gr.Row():
|
871 |
-
with gr.Column():
|
872 |
-
txt2vid_prompt = gr.Textbox(
|
873 |
-
label="Step 1: ν둬ννΈ μ
λ ₯",
|
874 |
-
placeholder="μμ±νκ³ μΆμ λΉλμ€λ₯Ό μ€λͺ
νμΈμ (μ΅μ 50μ)...",
|
875 |
-
value="κ·μ¬μ΄ κ³ μμ΄",
|
876 |
-
lines=5,
|
877 |
-
)
|
878 |
-
txt2vid_enhance_toggle = Toggle(
|
879 |
-
label="ν둬ννΈ μ¦κ°",
|
880 |
-
value=False,
|
881 |
-
interactive=True,
|
882 |
-
)
|
883 |
-
txt2vid_negative_prompt = gr.Textbox(
|
884 |
-
label="Step 2: λ€κ±°ν°λΈ ν둬ννΈ μ
λ ₯",
|
885 |
-
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
|
886 |
-
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
|
887 |
-
lines=2,
|
888 |
-
visible=False
|
889 |
-
)
|
890 |
-
txt2vid_preset = gr.Dropdown(
|
891 |
-
choices=[p["label"] for p in preset_options],
|
892 |
-
value="[16:9] 512x320, 10.3μ΄",
|
893 |
-
label="Step 2: ν΄μλ ν리μ
μ ν",
|
894 |
-
)
|
895 |
-
txt2vid_frame_rate = gr.Slider(
|
896 |
-
label="Step 3: νλ μ λ μ΄νΈ",
|
897 |
-
minimum=21,
|
898 |
-
maximum=30,
|
899 |
-
step=1,
|
900 |
-
value=25,
|
901 |
-
visible=False
|
902 |
-
)
|
903 |
-
txt2vid_advanced = create_advanced_options()
|
904 |
-
txt2vid_generate = gr.Button(
|
905 |
-
"Step 3: λΉλμ€ μμ±",
|
906 |
-
variant="primary",
|
907 |
-
size="lg",
|
908 |
-
)
|
909 |
-
with gr.Column():
|
910 |
-
txt2vid_output = gr.Video(label="μμ±λ λΉλμ€")
|
911 |
-
|
912 |
-
|
913 |
-
# Image to Video Tab
|
914 |
-
with gr.TabItem("μ΄λ―Έμ§λ‘ λΉλμ€ λ§λ€κΈ°"):
|
915 |
-
with gr.Row():
|
916 |
-
with gr.Column():
|
917 |
-
img2vid_image = gr.Image(
|
918 |
-
type="filepath",
|
919 |
-
label="Step 1: μ
λ ₯ μ΄λ―Έμ§ μ
λ‘λ",
|
920 |
-
elem_id="image_upload",
|
921 |
-
)
|
922 |
-
img2vid_prompt = gr.Textbox(
|
923 |
-
label="Step 2: ν둬ννΈ μ
λ ₯",
|
924 |
-
placeholder="μ΄λ―Έμ§λ₯Ό μ΄λ»κ² μ λλ©μ΄μ
νν μ§ μ€λͺ
νμΈμ (μ΅μ 50μ)...",
|
925 |
-
value="κ·μ¬μ΄ κ³ μμ΄",
|
926 |
-
lines=5,
|
927 |
-
)
|
928 |
-
img2vid_enhance_toggle = Toggle(
|
929 |
-
label="ν둬ννΈ μ¦κ°",
|
930 |
-
value=False,
|
931 |
-
interactive=True,
|
932 |
-
)
|
933 |
-
img2vid_negative_prompt = gr.Textbox(
|
934 |
-
label="Step 3: λ€κ±°ν°λΈ ν둬ννΈ μ
λ ₯",
|
935 |
-
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
|
936 |
-
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
|
937 |
-
lines=2,
|
938 |
-
visible=False
|
939 |
-
)
|
940 |
-
img2vid_preset = gr.Dropdown(
|
941 |
-
choices=[p["label"] for p in preset_options],
|
942 |
-
value="[16:9] 512x320, 10.3μ΄",
|
943 |
-
label="Step 3: ν΄μλ ν리μ
μ ν",
|
944 |
-
)
|
945 |
-
img2vid_frame_rate = gr.Slider(
|
946 |
-
label="Step 4: νλ μ λ μ΄νΈ",
|
947 |
-
minimum=21,
|
948 |
-
maximum=30,
|
949 |
-
step=1,
|
950 |
-
value=25,
|
951 |
-
visible=False
|
952 |
-
)
|
953 |
-
img2vid_advanced = create_advanced_options()
|
954 |
-
img2vid_generate = gr.Button(
|
955 |
-
"Step 4: λΉλμ€ μμ±",
|
956 |
-
variant="primary",
|
957 |
-
size="lg",
|
958 |
-
)
|
959 |
-
with gr.Column():
|
960 |
-
img2vid_output = gr.Video(label="μμ±λ λΉλμ€")
|
961 |
-
|
962 |
-
|
963 |
-
# Scenario Tab
|
964 |
-
with gr.TabItem("μλ리μ€λ‘ λΉλμ€ λ§λ€κΈ°(μνΌ)"):
|
965 |
-
with gr.Row():
|
966 |
-
with gr.Column(scale=1):
|
967 |
-
script_topic = gr.Textbox(
|
968 |
-
label="μ€ν¬λ¦½νΈ μμ±",
|
969 |
-
placeholder="κ²¨μΈ μΌλ³Έ μ¨μ² μ¬νμ μ£Όμ λ‘ λ°μ λλμΌλ‘ μ€ν¬λ¦½νΈ μμ±νλΌ",
|
970 |
-
lines=2
|
971 |
-
)
|
972 |
-
generate_script_btn = gr.Button("μ€ν¬λ¦½νΈ μμ±", variant="primary")
|
973 |
-
|
974 |
-
scenario_input = gr.Textbox(
|
975 |
-
label="μμ μ€ν¬λ¦½νΈ μ
λ ₯",
|
976 |
-
placeholder="μ 체 μλ리μ€λ₯Ό μ
λ ₯νμΈμ...",
|
977 |
-
lines=10
|
978 |
-
)
|
979 |
-
scenario_preset = gr.Dropdown(
|
980 |
-
choices=[p["label"] for p in preset_options],
|
981 |
-
value="[16:9] 512x320, 10.3μ΄",
|
982 |
-
label="νλ©΄ ν¬κΈ° μ ν"
|
983 |
-
)
|
984 |
-
analyze_btn = gr.Button("μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±", variant="primary")
|
985 |
-
|
986 |
-
with gr.Column(scale=2):
|
987 |
-
with gr.Row():
|
988 |
-
# μΉμ
1
|
989 |
-
with gr.Column():
|
990 |
-
section1_prompt = gr.Textbox(
|
991 |
-
label="1. λ°°κ²½ λ° νμμ±",
|
992 |
-
lines=4
|
993 |
-
)
|
994 |
-
with gr.Row():
|
995 |
-
section1_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
996 |
-
section1_generate = gr.Button("π μμ μμ±")
|
997 |
-
section1_video = gr.Video(label="μΉμ
1 μμ")
|
998 |
-
|
999 |
-
# μΉμ
2
|
1000 |
-
with gr.Column():
|
1001 |
-
section2_prompt = gr.Textbox(
|
1002 |
-
label="2. ν₯λ―Έ μ λ°",
|
1003 |
-
lines=4
|
1004 |
-
)
|
1005 |
-
with gr.Row():
|
1006 |
-
section2_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
1007 |
-
section2_generate = gr.Button("π μμ μμ±")
|
1008 |
-
section2_video = gr.Video(label="μΉμ
2 μμ")
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
with gr.Row():
|
1013 |
-
# μΉμ
3
|
1014 |
-
with gr.Column():
|
1015 |
-
section3_prompt = gr.Textbox(
|
1016 |
-
label="3. ν΄κ²°μ±
μ μ",
|
1017 |
-
lines=4
|
1018 |
-
)
|
1019 |
-
with gr.Row():
|
1020 |
-
section3_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
1021 |
-
section3_generate = gr.Button("π μμ μμ±")
|
1022 |
-
section3_video = gr.Video(label="μΉμ
3 μμ")
|
1023 |
-
|
1024 |
-
# μΉμ
4
|
1025 |
-
with gr.Column():
|
1026 |
-
section4_prompt = gr.Textbox(
|
1027 |
-
label="4. λ³Έλ‘ ",
|
1028 |
-
lines=4
|
1029 |
-
)
|
1030 |
-
with gr.Row():
|
1031 |
-
section4_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
1032 |
-
section4_generate = gr.Button("π μμ μμ±")
|
1033 |
-
section4_video = gr.Video(label="μΉμ
4 μμ")
|
1034 |
-
|
1035 |
-
with gr.Row():
|
1036 |
-
# μΉμ
5
|
1037 |
-
with gr.Column():
|
1038 |
-
section5_prompt = gr.Textbox(
|
1039 |
-
label="5. κ²°λ‘ λ° κ°μ‘°",
|
1040 |
-
lines=4
|
1041 |
-
)
|
1042 |
-
with gr.Row():
|
1043 |
-
section5_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
1044 |
-
section5_generate = gr.Button("π μμ μμ±")
|
1045 |
-
section5_video = gr.Video(label="μΉμ
5 μμ")
|
1046 |
-
|
1047 |
-
# ν΅ν© μμ μΉμ
|
1048 |
-
with gr.Row():
|
1049 |
-
with gr.Column(scale=1):
|
1050 |
-
merge_videos_btn = gr.Button("ν΅ν© μμ μμ±", variant="primary", size="lg")
|
1051 |
-
|
1052 |
-
with gr.Column(scale=2):
|
1053 |
-
with gr.Row():
|
1054 |
-
merged_video_output = gr.Video(label="ν΅ν© μμ")
|
1055 |
-
|
1056 |
-
|
1057 |
-
# Text to Video Tab handlers
|
1058 |
-
txt2vid_preset.change(
|
1059 |
-
fn=preset_changed,
|
1060 |
-
inputs=[txt2vid_preset],
|
1061 |
-
outputs=[
|
1062 |
-
txt2vid_current_height,
|
1063 |
-
txt2vid_current_width,
|
1064 |
-
txt2vid_current_num_frames,
|
1065 |
-
txt2vid_advanced[3], # height_slider
|
1066 |
-
txt2vid_advanced[4], # width_slider
|
1067 |
-
txt2vid_advanced[5], # num_frames_slider
|
1068 |
-
]
|
1069 |
-
)
|
1070 |
-
|
1071 |
-
txt2vid_enhance_toggle.change(
|
1072 |
-
fn=update_prompt_t2v,
|
1073 |
-
inputs=[txt2vid_prompt, txt2vid_enhance_toggle],
|
1074 |
-
outputs=txt2vid_prompt
|
1075 |
-
)
|
1076 |
-
|
1077 |
-
txt2vid_generate.click(
|
1078 |
-
fn=generate_video_from_text,
|
1079 |
-
inputs=[
|
1080 |
-
txt2vid_prompt,
|
1081 |
-
txt2vid_enhance_toggle,
|
1082 |
-
txt2vid_negative_prompt,
|
1083 |
-
txt2vid_frame_rate,
|
1084 |
-
txt2vid_advanced[0], # seed
|
1085 |
-
txt2vid_advanced[1], # inference_steps
|
1086 |
-
txt2vid_advanced[2], # guidance_scale
|
1087 |
-
txt2vid_current_height,
|
1088 |
-
txt2vid_current_width,
|
1089 |
-
txt2vid_current_num_frames,
|
1090 |
-
],
|
1091 |
-
outputs=txt2vid_output,
|
1092 |
-
)
|
1093 |
-
|
1094 |
-
# Image to Video Tab handlers
|
1095 |
-
img2vid_preset.change(
|
1096 |
-
fn=preset_changed,
|
1097 |
-
inputs=[img2vid_preset],
|
1098 |
-
outputs=[
|
1099 |
-
img2vid_current_height,
|
1100 |
-
img2vid_current_width,
|
1101 |
-
img2vid_current_num_frames,
|
1102 |
-
img2vid_advanced[3], # height_slider
|
1103 |
-
img2vid_advanced[4], # width_slider
|
1104 |
-
img2vid_advanced[5], # num_frames_slider
|
1105 |
-
]
|
1106 |
-
)
|
1107 |
-
|
1108 |
-
img2vid_enhance_toggle.change(
|
1109 |
-
fn=update_prompt_i2v,
|
1110 |
-
inputs=[img2vid_prompt, img2vid_enhance_toggle],
|
1111 |
-
outputs=img2vid_prompt
|
1112 |
-
)
|
1113 |
-
|
1114 |
-
img2vid_generate.click(
|
1115 |
-
fn=generate_video_from_image,
|
1116 |
-
inputs=[
|
1117 |
-
img2vid_image,
|
1118 |
-
img2vid_prompt,
|
1119 |
-
img2vid_enhance_toggle,
|
1120 |
-
img2vid_negative_prompt,
|
1121 |
-
img2vid_frame_rate,
|
1122 |
-
img2vid_advanced[0], # seed
|
1123 |
-
img2vid_advanced[1], # inference_steps
|
1124 |
-
img2vid_advanced[2], # guidance_scale
|
1125 |
-
img2vid_current_height,
|
1126 |
-
img2vid_current_width,
|
1127 |
-
img2vid_current_num_frames,
|
1128 |
-
],
|
1129 |
-
outputs=img2vid_output,
|
1130 |
-
)
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
# Scenario Tab handlers
|
1135 |
-
generate_script_btn.click(
|
1136 |
-
fn=generate_script,
|
1137 |
-
inputs=[script_topic],
|
1138 |
-
outputs=[scenario_input]
|
1139 |
-
)
|
1140 |
-
|
1141 |
-
analyze_btn.click(
|
1142 |
-
fn=analyze_scenario,
|
1143 |
-
inputs=[scenario_input],
|
1144 |
-
outputs=[
|
1145 |
-
section1_prompt, section2_prompt, section3_prompt,
|
1146 |
-
section4_prompt, section5_prompt
|
1147 |
-
]
|
1148 |
-
)
|
1149 |
-
|
1150 |
-
# μΉμ
λ³ ν둬ννΈ μ¬μμ± νΈλ€λ¬
|
1151 |
-
section1_regenerate.click(
|
1152 |
-
fn=lambda x: generate_single_section_prompt(x, 1),
|
1153 |
-
inputs=[scenario_input],
|
1154 |
-
outputs=section1_prompt
|
1155 |
-
)
|
1156 |
-
|
1157 |
-
section2_regenerate.click(
|
1158 |
-
fn=lambda x: generate_single_section_prompt(x, 2),
|
1159 |
-
inputs=[scenario_input],
|
1160 |
-
outputs=section2_prompt
|
1161 |
-
)
|
1162 |
-
|
1163 |
-
section3_regenerate.click(
|
1164 |
-
fn=lambda x: generate_single_section_prompt(x, 3),
|
1165 |
-
inputs=[scenario_input],
|
1166 |
-
outputs=section3_prompt
|
1167 |
-
)
|
1168 |
-
|
1169 |
-
section4_regenerate.click(
|
1170 |
-
fn=lambda x: generate_single_section_prompt(x, 4),
|
1171 |
-
inputs=[scenario_input],
|
1172 |
-
outputs=section4_prompt
|
1173 |
-
)
|
1174 |
-
|
1175 |
-
section5_regenerate.click(
|
1176 |
-
fn=lambda x: generate_single_section_prompt(x, 5),
|
1177 |
-
inputs=[scenario_input],
|
1178 |
-
outputs=section5_prompt
|
1179 |
-
)
|
1180 |
-
|
1181 |
-
# μΉμ
λ³ λΉλμ€ μμ± νΈλ€λ¬
|
1182 |
-
section1_generate.click(
|
1183 |
-
fn=lambda p, pr: generate_section_video(p, pr, 1),
|
1184 |
-
inputs=[section1_prompt, scenario_preset],
|
1185 |
-
outputs=section1_video
|
1186 |
-
)
|
1187 |
-
|
1188 |
-
section2_generate.click(
|
1189 |
-
fn=lambda p, pr: generate_section_video(p, pr, 2),
|
1190 |
-
inputs=[section2_prompt, scenario_preset],
|
1191 |
-
outputs=section2_video
|
1192 |
-
)
|
1193 |
-
|
1194 |
-
section3_generate.click(
|
1195 |
-
fn=lambda p, pr: generate_section_video(p, pr, 3),
|
1196 |
-
inputs=[section3_prompt, scenario_preset],
|
1197 |
-
outputs=section3_video
|
1198 |
-
)
|
1199 |
-
|
1200 |
-
section4_generate.click(
|
1201 |
-
fn=lambda p, pr: generate_section_video(p, pr, 4),
|
1202 |
-
inputs=[section4_prompt, scenario_preset],
|
1203 |
-
outputs=section4_video
|
1204 |
-
)
|
1205 |
-
|
1206 |
-
section5_generate.click(
|
1207 |
-
fn=lambda p, pr: generate_section_video(p, pr, 5),
|
1208 |
-
inputs=[section5_prompt, scenario_preset],
|
1209 |
-
outputs=section5_video
|
1210 |
-
)
|
1211 |
-
|
1212 |
-
# ν΅ν© μμ μμ± νΈλ€λ¬
|
1213 |
-
merge_videos_btn.click(
|
1214 |
-
fn=merge_section_videos,
|
1215 |
-
inputs=[
|
1216 |
-
section1_video,
|
1217 |
-
section2_video,
|
1218 |
-
section3_video,
|
1219 |
-
section4_video,
|
1220 |
-
section5_video
|
1221 |
-
],
|
1222 |
-
outputs=merged_video_output
|
1223 |
-
)
|
1224 |
-
|
1225 |
-
if __name__ == "__main__":
|
1226 |
-
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
1227 |
-
share=True,
|
1228 |
-
show_api=False
|
1229 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|