File size: 1,468 Bytes
be62d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0259587
be62d39
0259587
 
 
 
 
 
 
 
 
be62d39
 
 
 
 
0259587
 
 
 
 
 
 
 
be62d39
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os

import torch

from dataclasses import dataclass
from enum import Enum

from src.envs import CACHE_PATH


@dataclass
class Task:
    benchmark: str
    # metric: str # yeah i don't think we need this. 
    col_name: str
    num_fewshot: int


class Tasks(Enum):
    
    task0 = Task("medmcqa", "MedMCQA", 0) 
    task1   = Task("medqa_4options", "MedQA", 0)

    task2   = Task("anatomy (mmlu)", "MMLU Anatomy", 0) 
    task3        = Task("clinical_knowledge (mmlu)", "MMLU Clinical Knowledge", 0) 
    task4        = Task("college_biology (mmlu)", "MMLU College Biology", 0) 
    task5        = Task("college_medicine (mmlu)", "MMLU College Medicine", 0) 
    task6        = Task("medical_genetics (mmlu)", "MMLU Medical Genetics", 0) 
    task7        = Task("professional_medicine (mmlu)", "MMLU Professional Medicine", 0) 
    task8       = Task("pubmedqa", "PubMedQA", 0) 
    


num_fewshots = {
    "medmcqa": 0,
    "medqa_4options": 0,
    "anatomy (mmlu)":0,
    "clinical_knowledge (mmlu)": 0, 
    "college_biology (mmlu)":0,
    "college_medicine (mmlu)":0,
    "medical_genetics (mmlu)":0,
    "professional_medicine (mmlu)":0,
    "pubmedqa":0,
}


# NUM_FEWSHOT = 64  # Change with your few shot

EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")

DEVICE = "cuda" if torch.cuda.is_available() else 'mps'

LIMIT = None  # Testing; needs to be None