Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
File size: 5,078 Bytes
be62d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import glob
import json
from dataclasses import dataclass
from typing import Optional, List
from huggingface_hub import HfApi, snapshot_download
from src.utils import my_snapshot_download
from lm_eval import tasks, evaluator, utils
from src.display.utils import Task
@dataclass
class EvalRequest:
model: str
## added
requested_tasks: List[Task] # dict?
private: bool
status: str
json_filepath: str
weight_type: str = "Original"
model_type: str = "" # pretrained, finetuned, with RL
precision: str = "" # float16, bfloat16
base_model: Optional[str] = None # for adapter models
revision: str = "main" # commit
submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
model_type: Optional[str] = None
likes: Optional[int] = 0
params: Optional[int] = None
license: Optional[str] = ""
## added by chaeeun
def get_user_requested_task_names(self) -> List[str]:
user_requested_tasks = self.requested_tasks
# print(f" {user_requested_tasks}")
task_names = [task['benchmark'] for task in user_requested_tasks]
return task_names
def get_model_args(self) -> str:
## added
if "gpt" in self.model:
model_args = f"model={self.model},revision={self.revision},parallelize=True"
else:
model_args = f"pretrained={self.model},revision={self.revision},parallelize=True"
if self.precision in ["float16", "float32", "bfloat16"]:
model_args += f",dtype={self.precision}"
# Quantized models need some added config, the install of bits and bytes, etc
#elif self.precision == "8bit":
# model_args += ",load_in_8bit=True"
#elif self.precision == "4bit":
# model_args += ",load_in_4bit=True"
#elif self.precision == "GPTQ":
# A GPTQ model does not need dtype to be specified,
# it will be inferred from the config
pass
else:
raise Exception(f"Unknown precision {self.precision}.")
return model_args
# set as in on remote repo!
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str):
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
json_filepath = eval_request.json_filepath
with open(json_filepath) as fp:
data = json.load(fp)
data["status"] = set_to_status
with open(json_filepath, "w") as f:
f.write(json.dumps(data))
api.upload_file(path_or_fileobj=json_filepath, path_in_repo=json_filepath.replace(local_dir, ""),
repo_id=hf_repo, repo_type="dataset")
# getting status from the remote repo as well.
def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[EvalRequest]:
"""Get all pending evaluation requests and return a list in which private
models appearing first, followed by public models sorted by the number of
likes.
Returns:
`list[EvalRequest]`: a list of model info dicts.
"""
my_snapshot_download(repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60)
json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True)
eval_requests = []
for json_filepath in json_files:
with open(json_filepath) as fp:
data = json.load(fp)
if data["status"] in job_status:
# import pdb
# breakpoint()
data["json_filepath"] = json_filepath
if 'job_id' in data:
del data['job_id']
print(f"data in get_eval_requests(): {data}")
eval_request = EvalRequest(**data)
eval_requests.append(eval_request)
print(f"eval_requests right before returning: {eval_requests}")
return eval_requests
# not entirely sure what this one does.
def check_completed_evals(api: HfApi, hf_repo: str, local_dir: str, checked_status: str, completed_status: str,
failed_status: str, hf_repo_results: str, local_dir_results: str):
"""Checks if the currently running evals are completed, if yes, update their status on the hub."""
my_snapshot_download(repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60)
running_evals = get_eval_requests([checked_status], hf_repo=hf_repo, local_dir=local_dir)
for eval_request in running_evals:
model = eval_request.model
print("====================================")
print(f"Checking {model}")
output_path = model
output_file = f"{local_dir_results}/{output_path}/results*.json"
output_file_exists = len(glob.glob(output_file)) > 0
if output_file_exists:
print(f"EXISTS output file exists for {model} setting it to {completed_status}")
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|