Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,069 Bytes
be62d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
user_submission_permission,
)
## it just uploads request file. where does the evaluation actually happen?
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
requested_tasks: list, # write better type hints. this is list of class Task.
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
# REQUESTED_MODELS is set(file_names), where file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Is the user rate limited?
if user_name != "":
user_can_submit, error_msg = user_submission_permission(
user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
)
if not user_can_submit:
return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
print()
print(f"requested_tasks: {requested_tasks}")
print(f"type(requested_tasks): {type(requested_tasks)}")
print()
# requested_tasks: [{'benchmark': 'hellaswag', 'metric': 'acc_norm', 'col_name': 'HellaSwag'}, {'benchmark': 'pubmedqa', 'metric': 'acc', 'col_name': 'PubMedQA'}]
# type(requested_tasks): <class 'list'>
requested_task_names = [task_dic['benchmark'] for task_dic in requested_tasks]
print()
print(f"requested_task_names: {requested_task_names}")
print(f"type(requested_task_names): {type(requested_task_names)}")
print()
already_submitted_tasks = []
for requested_task_name in requested_task_names:
if f"{model}_{requested_task_name}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
already_submitted_tasks.append(requested_task_name)
task_names_for_eval = set(requested_task_names) - set(already_submitted_tasks)
task_names_for_eval = list(task_names_for_eval)
return_msg = "Your request has been submitted to the evaluation queue! Please wait for up to an hour for the model to show in the PENDING list."
if len(already_submitted_tasks) > 0:
return_msg = f"This model has been already submitted for task(s) {already_submitted_tasks}. Evaluation will proceed for tasks {task_names_for_eval}. Please wait for up to an hour for the model to show in the PENDING list."
if len(task_names_for_eval)==0:
return styled_warning(f"This model has been already submitted for task(s) {already_submitted_tasks}.")
tasks_for_eval = [dct for dct in requested_tasks if dct['benchmark'] in task_names_for_eval]
print()
print(f"tasks_for_eval: {tasks_for_eval}")
# print(f"type(requested_task_names): {type(requested_task_names)}")
print()
eval_entry = {
"model": model,
"requested_tasks": tasks_for_eval, # this is a list of tasks. would eval file be written correctly for each tasks? YES. run_evaluation() takes list of tasks. might have to specify
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####----
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" # local path
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_{'_'.join([f'{task}' for task in task_names_for_eval])}_eval_request_{private}_{precision}_{weight_type}.json"
print(f"out_path = {out_path}")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry)) # local path used! for saving request file.
print("Uploading eval file (QUEUE_REPO)")
print()
print(f"path_or_fileobj={out_path}, path_in_repo={out_path.split('eval-queue/')[1]}, repo_id={QUEUE_REPO}, repo_type=dataset,")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
print(f"is os.remove(out_path) the problem?")
# Remove the local file
os.remove(out_path)
return styled_message(
return_msg
)
|