File size: 1,199 Bytes
be62d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os

from huggingface_hub import HfApi


H4_TOKEN = os.environ.get("HF_SECRET", None) 

# REPO_ID = "pminervini/hallucinations-leaderboard"
REPO_ID = "CDT-BMAI-GP/biomed_probing_leaderboard" # "chaeeunlee/test_leaderboard" # "hallucinations-leaderboard/leaderboard" 

QUEUE_REPO = "chaeeunlee/test_requests"
RESULTS_REPO = "chaeeunlee/test_results"

# have not created these repos yet
PRIVATE_QUEUE_REPO = "chaeeunlee/test_private-requests"
PRIVATE_RESULTS_REPO = "chaeeunlee/test_private-results"

IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))

# CACHE_PATH = "/Users/chaeeunlee/Documents/VSC_workspaces/test_leaderboard" # 
CACHE_PATH = os.getenv("HF_HOME", ".") 

print(f"CACHE_PATH = {CACHE_PATH}")

EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")

EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"

# PATH_TO_COLLECTION = "hallucinations-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03" # ??

# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
HAS_HIGHER_RATE_LIMIT = ["TheBloke"]

API = HfApi(token=H4_TOKEN)
# API = HfApi()