File size: 1,322 Bytes
be62d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os

import torch

from dataclasses import dataclass
from enum import Enum

from src.envs import CACHE_PATH


@dataclass
class Task:
    benchmark: str
    # metric: str # yeah i don't think we need this. 
    col_name: str
    num_fewshot: int


# how are these differentiated with Tasks in display/utils.py ?
class Tasks(Enum):
    # task0 = Task("pubmedqa", "acc", "PubMedQA", 0)  # 64, as in the ATLAS paper
    # task1 = Task("hellaswag", "acc_norm", "HellaSwag", 0)  # 64, as in the ATLAS paper
    # task0 = Task("medqa", "acc_norm", "MedQA", 0) # medqa_4options?
    # task0 = Task("medmcqa", "acc_norm", "MedMCQA", 0) 
    # task1 = Task("pubmedqa", "acc", "PubMedQA", 0) 

    task0 = Task("medmcqa", "MedMCQA", 0) 
    task1 = Task("pubmedqa", "PubMedQA", 0) 
    task2 = Task("pubmedqa_no_context", "PubMedQA_no_context", 0) 
    task3 = Task("biolama_umls", "BioLAMA-UMLS", 0) 
    


num_fewshots = {
    "medqa": 0,
    "medmcqa": 0,
    "pubmedqa": 0, 
    "pubmedqa_no_context":0,
    "biolama_umls":0,
}


# NUM_FEWSHOT = 64  # Change with your few shot

EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")

DEVICE = "cuda" if torch.cuda.is_available() else 'mps'

LIMIT = None  # Testing; needs to be None