Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.filter_models import filter_models | |
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult | |
''' | |
This function, get_leaderboard_df, is designed to read and process evaluation results from a specified results path and requests path, | |
ultimately producing a leaderboard in the form of a pandas DataFrame. The process involves several steps, including filtering, sorting, | |
and cleaning the data based on specific criteria. Let's break down the function step by step: | |
''' | |
## TO-DO: if raw_data is [], return dummy df with correct columns so that the UI shows the right columns | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> tuple[list[EvalResult], pd.DataFrame]: | |
print(f"results_path = {results_path}") | |
raw_data = get_raw_eval_results(results_path, requests_path) | |
all_data_json = [v.to_dict() for v in raw_data] # if v.is_complete()] | |
# all_data_json.append(baseline_row) | |
filter_models(all_data_json) | |
print(f"all_data_json = {all_data_json}") | |
df = pd.DataFrame.from_records(all_data_json) | |
task_attributes = [] | |
# Iterate over all attributes of AutoEvalColumn class | |
for attr_name in dir(AutoEvalColumn): | |
# Retrieve the attribute object | |
attr = getattr(AutoEvalColumn, attr_name) | |
# Check if the attribute has 'is_task' attribute and it is True | |
if hasattr(attr, 'is_task') and getattr(attr, 'is_task'): | |
task_attributes.append(attr) | |
# Now task_attributes contains all attributes where is_task=True | |
# print(task_attributes) | |
task_col_names_all = [str(item.name) for item in task_attributes] | |
# import pdb; pdb.set_trace() | |
# Add empty columns with specified names | |
for col_name in task_col_names_all: | |
if col_name not in df.columns: | |
df[col_name] = None | |
return raw_data, df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |