MotzWanted's picture
feat: fork biomed leaderboard
be62d39
raw
history blame
7.07 kB
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
user_submission_permission,
)
## it just uploads request file. where does the evaluation actually happen?
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
requested_tasks: list, # write better type hints. this is list of class Task.
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
# REQUESTED_MODELS is set(file_names), where file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Is the user rate limited?
if user_name != "":
user_can_submit, error_msg = user_submission_permission(
user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
)
if not user_can_submit:
return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
print()
print(f"requested_tasks: {requested_tasks}")
print(f"type(requested_tasks): {type(requested_tasks)}")
print()
# requested_tasks: [{'benchmark': 'hellaswag', 'metric': 'acc_norm', 'col_name': 'HellaSwag'}, {'benchmark': 'pubmedqa', 'metric': 'acc', 'col_name': 'PubMedQA'}]
# type(requested_tasks): <class 'list'>
requested_task_names = [task_dic['benchmark'] for task_dic in requested_tasks]
print()
print(f"requested_task_names: {requested_task_names}")
print(f"type(requested_task_names): {type(requested_task_names)}")
print()
already_submitted_tasks = []
for requested_task_name in requested_task_names:
if f"{model}_{requested_task_name}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
already_submitted_tasks.append(requested_task_name)
task_names_for_eval = set(requested_task_names) - set(already_submitted_tasks)
task_names_for_eval = list(task_names_for_eval)
return_msg = "Your request has been submitted to the evaluation queue! Please wait for up to an hour for the model to show in the PENDING list."
if len(already_submitted_tasks) > 0:
return_msg = f"This model has been already submitted for task(s) {already_submitted_tasks}. Evaluation will proceed for tasks {task_names_for_eval}. Please wait for up to an hour for the model to show in the PENDING list."
if len(task_names_for_eval)==0:
return styled_warning(f"This model has been already submitted for task(s) {already_submitted_tasks}.")
tasks_for_eval = [dct for dct in requested_tasks if dct['benchmark'] in task_names_for_eval]
print()
print(f"tasks_for_eval: {tasks_for_eval}")
# print(f"type(requested_task_names): {type(requested_task_names)}")
print()
eval_entry = {
"model": model,
"requested_tasks": tasks_for_eval, # this is a list of tasks. would eval file be written correctly for each tasks? YES. run_evaluation() takes list of tasks. might have to specify
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####----
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" # local path
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_{'_'.join([f'{task}' for task in task_names_for_eval])}_eval_request_{private}_{precision}_{weight_type}.json"
print(f"out_path = {out_path}")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry)) # local path used! for saving request file.
print("Uploading eval file (QUEUE_REPO)")
print()
print(f"path_or_fileobj={out_path}, path_in_repo={out_path.split('eval-queue/')[1]}, repo_id={QUEUE_REPO}, repo_type=dataset,")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
print(f"is os.remove(out_path) the problem?")
# Remove the local file
os.remove(out_path)
return styled_message(
return_msg
)