UGround / llava /eval /model_vqa.py
BoyuNLP's picture
init
3bbba47
raw
history blame
4.89 kB
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
for line in tqdm(questions):
idx = line["id"]
image_file = line["image"]
qs = line["text"]
if 'box' in line:
box=line["box"]
else:
box=""
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
# print("DEBUG",model.config)
image_tensor, image_new_size = process_images([image], image_processor, model.config)
# image_tensor,image_new_size = process_images([image], image_processor, model.config)[0]
with torch.inference_mode():
output_ids = model.generate(
input_ids,
# images=image_tensor.unsqueeze(0).half().cuda(),
images=image_tensor.half().cuda(),
image_sizes=[image_new_size],
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
# no_repeat_ngram_size=3,
max_new_tokens=16384,
use_cache=True)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
metadata = {k: v for k, v in line.items() if k not in ["id", "image", "text"]}
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
'image': image_file,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"box": box,
"metadata": metadata}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="/fs/ess/PAS1576/boyu_gou/train_vlm/ui_llava_fine_tune/checkpoints/ui-llava-ocr-text/merged-llava-v1.5-vicuna-7b-16k-pad-fusion-ocr-100k-text-1-200k-mobile-aug-1-200k")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="/fs/ess/PAS1576/boyu_gou/Benchmark/screenspot_imgs_resized/")
parser.add_argument("--question-file", type=str, default="/fs/ess/PAS1576/boyu_gou/Benchmark/screenspot_web_text.jsonl")
parser.add_argument("--answers-file", type=str, default="/fs/ess/PAS1576/boyu_gou/Benchmark/answer_screenspot_web.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
args = parser.parse_args()
eval_model(args)