Spaces:
Sleeping
Sleeping
add script
Browse files- .gitignore +1 -0
- README.md +1 -1
- app.py +58 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv
|
README.md
CHANGED
@@ -3,7 +3,7 @@ title: Kspace Reconstruction Masks
|
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
6 |
-
sdk:
|
7 |
sdk_version: 1.36.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
sdk_version: 1.36.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from fastmri.data.subsample import create_mask_for_mask_type
|
4 |
+
from fastmri.data.transforms import apply_mask, to_tensor, center_crop
|
5 |
+
from pytorch_msssim import ssim
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# st.title('FastMRI Kspace Reconstruction Masks')
|
10 |
+
# st.write('This app allows you to visualize the masks and their effects on the kspace data.')
|
11 |
+
|
12 |
+
|
13 |
+
def main_func(
|
14 |
+
mask_name: str,
|
15 |
+
mask_center_fractions: int,
|
16 |
+
accelerations: int,
|
17 |
+
seed: int,
|
18 |
+
input_image: str,
|
19 |
+
):
|
20 |
+
|
21 |
+
file_dict = {
|
22 |
+
"knee 1": "knee_singlecoil_train/file1000002.h5",
|
23 |
+
"knee 2": "knee_singlecoil_train/file1000003.h5",
|
24 |
+
"brain 1": "brain_axial_train/file1000002.h5",
|
25 |
+
"prostate 1": "prostate_t1_tse_train/file1000002.h5",
|
26 |
+
"prostate 2": "prostate_t2_tse_train/file1000002.h5",
|
27 |
+
}
|
28 |
+
input_file = file_dict[input_image]
|
29 |
+
|
30 |
+
mask_func = create_mask_for_mask_type(
|
31 |
+
mask_name, center_fractions=[mask_center_fractions], accelerations=[accelerations]
|
32 |
+
)
|
33 |
+
mask =
|
34 |
+
masked_kspace, mask = mask(input_image, return_mask=True)
|
35 |
+
return masked_kspace, mask
|
36 |
+
|
37 |
+
demo = gr.Interface(
|
38 |
+
fn=main_func,
|
39 |
+
inputs=[
|
40 |
+
gr.inputs.Radio(['random', 'equispaced'], label="Mask Type"),
|
41 |
+
gr.inputs.Slider(minimum=0.04, maximum=0.4, default=0.08, label="Center Fraction"),
|
42 |
+
gr.inputs.Number(default=4, label="Acceleration"),
|
43 |
+
gr.inputs.Number(default=0, label="Seed"),
|
44 |
+
gr.inputs.Radio(["knee 1", "knee 2", "brain 1", "prostate 1", "prostate 2"], label="Input Image")
|
45 |
+
],
|
46 |
+
outputs=[
|
47 |
+
gr.outputs.Image(type="mask", label="Mask"),
|
48 |
+
gr.outputs.Image(type="kspace", label="Masked Kspace"),
|
49 |
+
gr.outputs.Image(type="kspace", label="Reconstructed Image"),
|
50 |
+
gr.outputs.Image(type="kspace", label="Original Image"),
|
51 |
+
|
52 |
+
gr.outputs.Dataframe()
|
53 |
+
],
|
54 |
+
title="FastMRI Kspace Reconstruction Masks",
|
55 |
+
description="This app allows you to visualize the masks and their effects on the kspace data."
|
56 |
+
)
|
57 |
+
|
58 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
fastmri
|
|
|
|
|
|
|
|
|
|
1 |
fastmri
|
2 |
+
scikit-image
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
torch
|