Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub | |
from huggingface_hub import login | |
# Obtener el token desde las variables de entorno | |
hf_token = os.getenv("HF_TOKEN") | |
if hf_token is None: | |
raise ValueError("Debe proporcionar un token de Hugging Face en las variables de entorno.") | |
# Ingresar el token | |
login(hf_token) | |
# Intentar cargar el modelo | |
# Load model directly | |
processor = AutoProcessor.from_pretrained("ovieyra21/es_speecht5_tts_mabama") | |
model = AutoModelForTextToSpectrogram.from_pretrained("ovieyra21/es_speecht5_tts_mabama") | |
try: | |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub("ovieyra21/es_speecht5_tts_mabama") | |
if not models: | |
raise RuntimeError("No se pudo cargar el modelo. Aseg煤rate de que el nombre del modelo es correcto y que est谩 disponible en Hugging Face Hub.") | |
model = models[0] | |
except Exception as e: | |
raise RuntimeError(f"Error al cargar el modelo: {e}") | |
# Funci贸n para generar la salida de texto a voz | |
def text_to_speech(text): | |
try: | |
# Preprocesamiento del texto | |
tokens = task.source_dictionary.encode_line(text, add_if_not_exist=False) | |
# Generar salida de audio | |
with torch.no_grad(): | |
sample = {"net_input": {"src_tokens": tokens.unsqueeze(0).long()}} | |
generator = task.build_generator([model], cfg.generation) | |
audio = task.inference_step(generator, [model], sample) | |
return audio[0][0].numpy() | |
except Exception as e: | |
return f"Error en la generaci贸n de audio: {e}" | |
# Crear interfaz de Gradio | |
iface = gr.Interface( | |
fn=text_to_speech, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Ingrese el texto aqu铆..."), | |
outputs=gr.outputs.Audio(type="numpy", label="Output Audio"), | |
title="Conversor de Texto a Voz", | |
description="Ingrese texto para convertirlo a voz utilizando el modelo speecht5_tts_mabama_es." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |