owaiskha9654 commited on
Commit
411ee84
1 Parent(s): 6da4e7a

add models

Browse files
data/coco.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # COCO 2017 dataset http://cocodataset.org
2
+
3
+ # download command/URL (optional)
4
+ download: bash ./scripts/get_coco.sh
5
+
6
+ # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
7
+ train: ./coco/train2017.txt # 118287 images
8
+ val: ./coco/val2017.txt # 5000 images
9
+ test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
10
+
11
+ # number of classes
12
+ nc: 80
13
+
14
+ # class names
15
+ names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
16
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
17
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
18
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
19
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
20
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
21
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
22
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
23
+ 'hair drier', 'toothbrush' ]
data/hyp.scratch.custom.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.2 # image translation (+/- fraction)
22
+ scale: 0.5 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.0 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.0 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
data/hyp.scratch.p5.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.2 # image translation (+/- fraction)
22
+ scale: 0.9 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.15 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
data/hyp.scratch.p6.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.2 # image translation (+/- fraction)
22
+ scale: 0.9 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.15 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
data/hyp.scratch.tiny.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.5 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 1.0 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.1 # image translation (+/- fraction)
22
+ scale: 0.5 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.05 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.05 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training