Spaces:
Build error
Build error
owaiskha9654
commited on
Commit
•
411ee84
1
Parent(s):
6da4e7a
add models
Browse files- data/coco.yaml +23 -0
- data/hyp.scratch.custom.yaml +31 -0
- data/hyp.scratch.p5.yaml +31 -0
- data/hyp.scratch.p6.yaml +31 -0
- data/hyp.scratch.tiny.yaml +31 -0
data/coco.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# COCO 2017 dataset http://cocodataset.org
|
2 |
+
|
3 |
+
# download command/URL (optional)
|
4 |
+
download: bash ./scripts/get_coco.sh
|
5 |
+
|
6 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
7 |
+
train: ./coco/train2017.txt # 118287 images
|
8 |
+
val: ./coco/val2017.txt # 5000 images
|
9 |
+
test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
10 |
+
|
11 |
+
# number of classes
|
12 |
+
nc: 80
|
13 |
+
|
14 |
+
# class names
|
15 |
+
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
16 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
17 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
18 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
19 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
20 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
21 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
22 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
23 |
+
'hair drier', 'toothbrush' ]
|
data/hyp.scratch.custom.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.3 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.2 # image translation (+/- fraction)
|
22 |
+
scale: 0.5 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.0 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.0 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.p5.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.3 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.2 # image translation (+/- fraction)
|
22 |
+
scale: 0.9 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.15 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.15 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.p6.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.3 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.2 # image translation (+/- fraction)
|
22 |
+
scale: 0.9 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.15 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.15 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.tiny.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.5 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.1 # image translation (+/- fraction)
|
22 |
+
scale: 0.5 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.05 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.05 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|