owaiskha9654 commited on
Commit
77138dd
1 Parent(s): d0871c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -83
app.py CHANGED
@@ -1,34 +1,27 @@
1
- import gradio as gr
2
  import os
3
-
4
- os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
5
- os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
6
- os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
7
-
8
- import argparse
9
- import time
10
- from pathlib import Path
11
-
12
  import cv2
 
13
  import torch
14
- import torch.backends.cudnn as cudnn
 
 
15
  from numpy import random
16
-
 
17
  from models.experimental import attempt_load
 
18
  from utils.datasets import LoadStreams, LoadImages
19
  from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
20
  scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
21
  from utils.plots import plot_one_box
22
  from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
23
- from PIL import Image
 
24
 
25
-
26
-
27
-
28
  def detect_Custom(img,model):
29
  parser = argparse.ArgumentParser()
30
  parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
31
- parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
32
  parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
33
  parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
34
  parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
@@ -48,57 +41,37 @@ def detect_Custom(img,model):
48
  opt = parser.parse_args()
49
  img.save("Inference/test.jpg")
50
  source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
51
- save_img = True # save inference images
52
  webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
53
  ('rtsp://', 'rtmp://', 'http://', 'https://'))
54
-
55
- # Directories
56
- save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
57
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
58
-
59
- # Initialize
60
  set_logging()
61
  device = select_device(opt.device)
62
- half = device.type != 'cpu' # half precision only supported on CUDA
63
-
64
- # Load model
65
- model = attempt_load(weights, map_location=device) # load FP32 model
66
- stride = int(model.stride.max()) # model stride
67
- imgsz = check_img_size(imgsz, s=stride) # check img_size
68
-
69
  if trace:
70
  model = TracedModel(model, device, opt.img_size)
71
-
72
  if half:
73
- model.half() # to FP16
74
-
75
- # Second-stage classifier
76
- classify = False
77
- if classify:
78
- modelc = load_classifier(name='resnet101', n=2) # initialize
79
- modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
80
-
81
- # Set Dataloader
82
  vid_path, vid_writer = None, None
83
  if webcam:
84
  view_img = check_imshow()
85
- cudnn.benchmark = True # set True to speed up constant image size inference
86
  dataset = LoadStreams(source, img_size=imgsz, stride=stride)
87
  else:
88
  dataset = LoadImages(source, img_size=imgsz, stride=stride)
89
-
90
- # Get names and colors
91
  names = model.module.names if hasattr(model, 'module') else model.names
92
  colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
93
-
94
- # Run inference
95
  if device.type != 'cpu':
96
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
97
  t0 = time.time()
98
  for path, img, im0s, vid_cap in dataset:
99
  img = torch.from_numpy(img).to(device)
100
- img = img.half() if half else img.float() # uint8 to fp16/32
101
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
102
  if img.ndimension() == 3:
103
  img = img.unsqueeze(0)
104
 
@@ -106,69 +79,60 @@ def detect_Custom(img,model):
106
  t1 = time_synchronized()
107
  pred = model(img, augment=opt.augment)[0]
108
 
109
- # Apply NMS
110
  pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
111
  t2 = time_synchronized()
112
 
113
- # Apply Classifier
114
  if classify:
115
  pred = apply_classifier(pred, modelc, img, im0s)
116
 
117
- # Process detections
118
- for i, det in enumerate(pred): # detections per image
119
- if webcam: # batch_size >= 1
120
  p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
121
  else:
122
  p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
123
 
124
- p = Path(p) # to Path
125
- save_path = str(save_dir / p.name) # img.jpg
126
  txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
127
- s += '%gx%g ' % img.shape[2:] # print string
128
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
129
  if len(det):
130
- # Rescale boxes from img_size to im0 size
131
  det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
132
 
133
- # Print results
134
  for c in det[:, -1].unique():
135
- n = (det[:, -1] == c).sum() # detections per class
136
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
137
 
138
- # Write results
139
  for *xyxy, conf, cls in reversed(det):
140
- if save_txt: # Write to file
141
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
142
- line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
143
  with open(txt_path + '.txt', 'a') as f:
144
  f.write(('%g ' * len(line)).rstrip() % line + '\n')
145
 
146
- if save_img or view_img: # Add bbox to image
147
  label = f'{names[int(cls)]} {conf:.2f}'
148
  plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
149
-
150
- # Print time (inference + NMS)
151
- #print(f'{s}Done. ({t2 - t1:.3f}s)')
152
-
153
- # Stream results
154
  if view_img:
155
  cv2.imshow(str(p), im0)
156
- cv2.waitKey(1) # 1 millisecond
157
 
158
- # Save results (image with detections)
159
  if save_img:
160
  if dataset.mode == 'image':
161
  cv2.imwrite(save_path, im0)
162
- else: # 'video' or 'stream'
163
- if vid_path != save_path: # new video
164
  vid_path = save_path
165
  if isinstance(vid_writer, cv2.VideoWriter):
166
- vid_writer.release() # release previous video writer
167
- if vid_cap: # video
168
  fps = vid_cap.get(cv2.CAP_PROP_FPS)
169
  w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
170
  h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
171
- else: # stream
172
  fps, w, h = 30, im0.shape[1], im0.shape[0]
173
  save_path += '.mp4'
174
  vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
@@ -176,7 +140,6 @@ def detect_Custom(img,model):
176
 
177
  if save_txt or save_img:
178
  s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
179
- #print(f"Results saved to {save_dir}{s}")
180
 
181
  print(f'Done. ({time.time() - t0:.3f}s)')
182
 
@@ -184,10 +147,10 @@ def detect_Custom(img,model):
184
 
185
 
186
 
187
- description="Custom Training Performed on Kaggle <a href='https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/notebook' style='text-decoration: underline' target='_blank'>Link</a> <br> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors <br> Also Please use <b>Images with .jpeg</b> because Yolo V7 Model is trained on GPU and while inferencing default CPU has been implemented"
188
 
189
  text1 = (
190
- "<center> Custom Model Trained by: Owais Ahmad Data Scientist at <b> Thoucentric </b> <a href=\"https://www.linkedin.com/in/owaiskhan9654/\">Visit Profile</a> <br></center>"
191
 
192
  "<center> Model Trained Kaggle Kernel <a href=\"https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/notebook\">Link</a> <br></center>"
193
 
@@ -198,4 +161,6 @@ text1 = (
198
 
199
  examples1=[["Image1.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image2.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image3.jpeg", "Yolo_v7_Custom_trained_By_Owais",],["Image4.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image5.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image6.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["horses.jpeg", "yolov7"],["horses.jpeg", "yolov7-e6"]]
200
 
201
- gr.Interface(detect_Custom,[gr.Image(type="pil"),gr.Dropdown(default="Yolo_v7_Custom_trained_By_Owais",choices=["best","yolov7","yolov7-e6"])],gr.Image(type="pil"),title="Yolov7 Custom Trained by <a href='https://www.linkedin.com/in/owaiskhan9654/' style='text-decoration: underline' target='_blank'>Owais Ahmad</a> ",examples=examples1,description=description,article=text1,cache_examples=False).launch()
 
 
 
 
1
  import os
 
 
 
 
 
 
 
 
 
2
  import cv2
3
+ import time
4
  import torch
5
+ import argparse
6
+ import gradio as gr
7
+ from PIL import Image
8
  from numpy import random
9
+ from pathlib import Path
10
+ import torch.backends.cudnn as cudnn
11
  from models.experimental import attempt_load
12
+
13
  from utils.datasets import LoadStreams, LoadImages
14
  from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
15
  scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
16
  from utils.plots import plot_one_box
17
  from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
18
+ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
19
+ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
20
 
 
 
 
21
  def detect_Custom(img,model):
22
  parser = argparse.ArgumentParser()
23
  parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
24
+ parser.add_argument('--source', type=str, default='Inference/', help='source')
25
  parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
26
  parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
27
  parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
 
41
  opt = parser.parse_args()
42
  img.save("Inference/test.jpg")
43
  source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
44
+ save_img = True
45
  webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
46
  ('rtsp://', 'rtmp://', 'http://', 'https://'))
47
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
48
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
 
 
 
 
49
  set_logging()
50
  device = select_device(opt.device)
51
+ half = device.type != 'cpu'
52
+ model = attempt_load(weights, map_location=device)
53
+ stride = int(model.stride.max())
54
+ imgsz = check_img_size(imgsz, s=stride)
 
 
 
55
  if trace:
56
  model = TracedModel(model, device, opt.img_size)
 
57
  if half:
58
+ model.half()
 
 
 
 
 
 
 
 
59
  vid_path, vid_writer = None, None
60
  if webcam:
61
  view_img = check_imshow()
62
+ cudnn.benchmark = True
63
  dataset = LoadStreams(source, img_size=imgsz, stride=stride)
64
  else:
65
  dataset = LoadImages(source, img_size=imgsz, stride=stride)
 
 
66
  names = model.module.names if hasattr(model, 'module') else model.names
67
  colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
 
 
68
  if device.type != 'cpu':
69
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))
70
  t0 = time.time()
71
  for path, img, im0s, vid_cap in dataset:
72
  img = torch.from_numpy(img).to(device)
73
+ img = img.half() if half else img.float()
74
+ img /= 255.0
75
  if img.ndimension() == 3:
76
  img = img.unsqueeze(0)
77
 
 
79
  t1 = time_synchronized()
80
  pred = model(img, augment=opt.augment)[0]
81
 
82
+
83
  pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
84
  t2 = time_synchronized()
85
 
 
86
  if classify:
87
  pred = apply_classifier(pred, modelc, img, im0s)
88
 
89
+ for i, det in enumerate(pred):
90
+ if webcam:
 
91
  p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
92
  else:
93
  p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
94
 
95
+ p = Path(p)
96
+ save_path = str(save_dir / p.name)
97
  txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
98
+ s += '%gx%g ' % img.shape[2:]
99
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
100
  if len(det):
 
101
  det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
102
 
103
+
104
  for c in det[:, -1].unique():
105
+ n = (det[:, -1] == c).sum()
106
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
107
 
108
+
109
  for *xyxy, conf, cls in reversed(det):
110
+ if save_txt:
111
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
112
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)
113
  with open(txt_path + '.txt', 'a') as f:
114
  f.write(('%g ' * len(line)).rstrip() % line + '\n')
115
 
116
+ if save_img or view_img:
117
  label = f'{names[int(cls)]} {conf:.2f}'
118
  plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
 
 
 
 
 
119
  if view_img:
120
  cv2.imshow(str(p), im0)
121
+ cv2.waitKey(1)
122
 
 
123
  if save_img:
124
  if dataset.mode == 'image':
125
  cv2.imwrite(save_path, im0)
126
+ else:
127
+ if vid_path != save_path:
128
  vid_path = save_path
129
  if isinstance(vid_writer, cv2.VideoWriter):
130
+ vid_writer.release()
131
+ if vid_cap:
132
  fps = vid_cap.get(cv2.CAP_PROP_FPS)
133
  w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
134
  h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
135
+ else:
136
  fps, w, h = 30, im0.shape[1], im0.shape[0]
137
  save_path += '.mp4'
138
  vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
 
140
 
141
  if save_txt or save_img:
142
  s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
 
143
 
144
  print(f'Done. ({time.time() - t0:.3f}s)')
145
 
 
147
 
148
 
149
 
150
+ description="<center>Custom Training Performed on Kaggle <a href='https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/notebook' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors </center> <br> <center>Also Please use <b>Images with .jpeg</b> because Yolo V7 Model is trained on GPU and while inferencing default CPU has been implemented</center>"
151
 
152
  text1 = (
153
+ "<center>Model Trained by: Owais Ahmad Data Scientist at <b> Thoucentric </b> <a href=\"https://www.linkedin.com/in/owaiskhan9654/\">Visit Profile</a> <br></center>"
154
 
155
  "<center> Model Trained Kaggle Kernel <a href=\"https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/notebook\">Link</a> <br></center>"
156
 
 
161
 
162
  examples1=[["Image1.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image2.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image3.jpeg", "Yolo_v7_Custom_trained_By_Owais",],["Image4.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image5.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image6.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["horses.jpeg", "yolov7"],["horses.jpeg", "yolov7-e6"]]
163
 
164
+ Title="<center>Yolov7 Custom Trained by <a href='https://www.linkedin.com/in/owaiskhan9654/' style='text-decoration: underline' target='_blank'>Owais Ahmad</center></a>"
165
+
166
+ gr.Interface(detect_Custom,[gr.Image(type="pil"),gr.Dropdown(default="Yolo_v7_Custom_trained_By_Owais",choices=["Yolo_v7_Custom_trained_By_Owais","yolov7","yolov7-e6"])],gr.Image(type="pil"),title=,examples=examples1,description=description,article=text1,cache_examples=False).launch()