Spaces:
Build error
Build error
owaiskha9654
commited on
Commit
•
a0e9945
1
Parent(s):
39780d9
add common
Browse files- models/__init__.py +1 -0
- models/common.py +2019 -0
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# init
|
models/common.py
ADDED
@@ -0,0 +1,2019 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from copy import copy
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torchvision.ops import DeformConv2d
|
12 |
+
from PIL import Image
|
13 |
+
from torch.cuda import amp
|
14 |
+
|
15 |
+
from utils.datasets import letterbox
|
16 |
+
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
|
17 |
+
from utils.plots import color_list, plot_one_box
|
18 |
+
from utils.torch_utils import time_synchronized
|
19 |
+
|
20 |
+
|
21 |
+
##### basic ####
|
22 |
+
|
23 |
+
def autopad(k, p=None): # kernel, padding
|
24 |
+
# Pad to 'same'
|
25 |
+
if p is None:
|
26 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
27 |
+
return p
|
28 |
+
|
29 |
+
|
30 |
+
class MP(nn.Module):
|
31 |
+
def __init__(self, k=2):
|
32 |
+
super(MP, self).__init__()
|
33 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=k)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
return self.m(x)
|
37 |
+
|
38 |
+
|
39 |
+
class SP(nn.Module):
|
40 |
+
def __init__(self, k=3, s=1):
|
41 |
+
super(SP, self).__init__()
|
42 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
return self.m(x)
|
46 |
+
|
47 |
+
|
48 |
+
class ReOrg(nn.Module):
|
49 |
+
def __init__(self):
|
50 |
+
super(ReOrg, self).__init__()
|
51 |
+
|
52 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
53 |
+
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
|
54 |
+
|
55 |
+
|
56 |
+
class Concat(nn.Module):
|
57 |
+
def __init__(self, dimension=1):
|
58 |
+
super(Concat, self).__init__()
|
59 |
+
self.d = dimension
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
return torch.cat(x, self.d)
|
63 |
+
|
64 |
+
|
65 |
+
class Chuncat(nn.Module):
|
66 |
+
def __init__(self, dimension=1):
|
67 |
+
super(Chuncat, self).__init__()
|
68 |
+
self.d = dimension
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x1 = []
|
72 |
+
x2 = []
|
73 |
+
for xi in x:
|
74 |
+
xi1, xi2 = xi.chunk(2, self.d)
|
75 |
+
x1.append(xi1)
|
76 |
+
x2.append(xi2)
|
77 |
+
return torch.cat(x1+x2, self.d)
|
78 |
+
|
79 |
+
|
80 |
+
class Shortcut(nn.Module):
|
81 |
+
def __init__(self, dimension=0):
|
82 |
+
super(Shortcut, self).__init__()
|
83 |
+
self.d = dimension
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
return x[0]+x[1]
|
87 |
+
|
88 |
+
|
89 |
+
class Foldcut(nn.Module):
|
90 |
+
def __init__(self, dimension=0):
|
91 |
+
super(Foldcut, self).__init__()
|
92 |
+
self.d = dimension
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
x1, x2 = x.chunk(2, self.d)
|
96 |
+
return x1+x2
|
97 |
+
|
98 |
+
|
99 |
+
class Conv(nn.Module):
|
100 |
+
# Standard convolution
|
101 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
102 |
+
super(Conv, self).__init__()
|
103 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
104 |
+
self.bn = nn.BatchNorm2d(c2)
|
105 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return self.act(self.bn(self.conv(x)))
|
109 |
+
|
110 |
+
def fuseforward(self, x):
|
111 |
+
return self.act(self.conv(x))
|
112 |
+
|
113 |
+
|
114 |
+
class RobustConv(nn.Module):
|
115 |
+
# Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
|
116 |
+
def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
|
117 |
+
super(RobustConv, self).__init__()
|
118 |
+
self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
|
119 |
+
self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
|
120 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
x = x.to(memory_format=torch.channels_last)
|
124 |
+
x = self.conv1x1(self.conv_dw(x))
|
125 |
+
if self.gamma is not None:
|
126 |
+
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class RobustConv2(nn.Module):
|
131 |
+
# Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
|
132 |
+
def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
|
133 |
+
super(RobustConv2, self).__init__()
|
134 |
+
self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
|
135 |
+
self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
|
136 |
+
padding=0, bias=True, dilation=1, groups=1
|
137 |
+
)
|
138 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
x = self.conv_deconv(self.conv_strided(x))
|
142 |
+
if self.gamma is not None:
|
143 |
+
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
def DWConv(c1, c2, k=1, s=1, act=True):
|
148 |
+
# Depthwise convolution
|
149 |
+
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
150 |
+
|
151 |
+
|
152 |
+
class GhostConv(nn.Module):
|
153 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
154 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
155 |
+
super(GhostConv, self).__init__()
|
156 |
+
c_ = c2 // 2 # hidden channels
|
157 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
158 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
y = self.cv1(x)
|
162 |
+
return torch.cat([y, self.cv2(y)], 1)
|
163 |
+
|
164 |
+
|
165 |
+
class Stem(nn.Module):
|
166 |
+
# Stem
|
167 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
168 |
+
super(Stem, self).__init__()
|
169 |
+
c_ = int(c2/2) # hidden channels
|
170 |
+
self.cv1 = Conv(c1, c_, 3, 2)
|
171 |
+
self.cv2 = Conv(c_, c_, 1, 1)
|
172 |
+
self.cv3 = Conv(c_, c_, 3, 2)
|
173 |
+
self.pool = torch.nn.MaxPool2d(2, stride=2)
|
174 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
x = self.cv1(x)
|
178 |
+
return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
|
179 |
+
|
180 |
+
|
181 |
+
class DownC(nn.Module):
|
182 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
183 |
+
def __init__(self, c1, c2, n=1, k=2):
|
184 |
+
super(DownC, self).__init__()
|
185 |
+
c_ = int(c1) # hidden channels
|
186 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
187 |
+
self.cv2 = Conv(c_, c2//2, 3, k)
|
188 |
+
self.cv3 = Conv(c1, c2//2, 1, 1)
|
189 |
+
self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
|
190 |
+
|
191 |
+
def forward(self, x):
|
192 |
+
return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
|
193 |
+
|
194 |
+
|
195 |
+
class SPP(nn.Module):
|
196 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
197 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
198 |
+
super(SPP, self).__init__()
|
199 |
+
c_ = c1 // 2 # hidden channels
|
200 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
201 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
202 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
x = self.cv1(x)
|
206 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
207 |
+
|
208 |
+
|
209 |
+
class Bottleneck(nn.Module):
|
210 |
+
# Darknet bottleneck
|
211 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
212 |
+
super(Bottleneck, self).__init__()
|
213 |
+
c_ = int(c2 * e) # hidden channels
|
214 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
215 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
216 |
+
self.add = shortcut and c1 == c2
|
217 |
+
|
218 |
+
def forward(self, x):
|
219 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
220 |
+
|
221 |
+
|
222 |
+
class Res(nn.Module):
|
223 |
+
# ResNet bottleneck
|
224 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
225 |
+
super(Res, self).__init__()
|
226 |
+
c_ = int(c2 * e) # hidden channels
|
227 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
228 |
+
self.cv2 = Conv(c_, c_, 3, 1, g=g)
|
229 |
+
self.cv3 = Conv(c_, c2, 1, 1)
|
230 |
+
self.add = shortcut and c1 == c2
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
|
234 |
+
|
235 |
+
|
236 |
+
class ResX(Res):
|
237 |
+
# ResNet bottleneck
|
238 |
+
def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
239 |
+
super().__init__(c1, c2, shortcut, g, e)
|
240 |
+
c_ = int(c2 * e) # hidden channels
|
241 |
+
|
242 |
+
|
243 |
+
class Ghost(nn.Module):
|
244 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
245 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
246 |
+
super(Ghost, self).__init__()
|
247 |
+
c_ = c2 // 2
|
248 |
+
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
249 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
250 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
251 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
252 |
+
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
253 |
+
|
254 |
+
def forward(self, x):
|
255 |
+
return self.conv(x) + self.shortcut(x)
|
256 |
+
|
257 |
+
##### end of basic #####
|
258 |
+
|
259 |
+
|
260 |
+
##### cspnet #####
|
261 |
+
|
262 |
+
class SPPCSPC(nn.Module):
|
263 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
264 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
|
265 |
+
super(SPPCSPC, self).__init__()
|
266 |
+
c_ = int(2 * c2 * e) # hidden channels
|
267 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
268 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
269 |
+
self.cv3 = Conv(c_, c_, 3, 1)
|
270 |
+
self.cv4 = Conv(c_, c_, 1, 1)
|
271 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
272 |
+
self.cv5 = Conv(4 * c_, c_, 1, 1)
|
273 |
+
self.cv6 = Conv(c_, c_, 3, 1)
|
274 |
+
self.cv7 = Conv(2 * c_, c2, 1, 1)
|
275 |
+
|
276 |
+
def forward(self, x):
|
277 |
+
x1 = self.cv4(self.cv3(self.cv1(x)))
|
278 |
+
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
|
279 |
+
y2 = self.cv2(x)
|
280 |
+
return self.cv7(torch.cat((y1, y2), dim=1))
|
281 |
+
|
282 |
+
class GhostSPPCSPC(SPPCSPC):
|
283 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
284 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
|
285 |
+
super().__init__(c1, c2, n, shortcut, g, e, k)
|
286 |
+
c_ = int(2 * c2 * e) # hidden channels
|
287 |
+
self.cv1 = GhostConv(c1, c_, 1, 1)
|
288 |
+
self.cv2 = GhostConv(c1, c_, 1, 1)
|
289 |
+
self.cv3 = GhostConv(c_, c_, 3, 1)
|
290 |
+
self.cv4 = GhostConv(c_, c_, 1, 1)
|
291 |
+
self.cv5 = GhostConv(4 * c_, c_, 1, 1)
|
292 |
+
self.cv6 = GhostConv(c_, c_, 3, 1)
|
293 |
+
self.cv7 = GhostConv(2 * c_, c2, 1, 1)
|
294 |
+
|
295 |
+
|
296 |
+
class GhostStem(Stem):
|
297 |
+
# Stem
|
298 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
299 |
+
super().__init__(c1, c2, k, s, p, g, act)
|
300 |
+
c_ = int(c2/2) # hidden channels
|
301 |
+
self.cv1 = GhostConv(c1, c_, 3, 2)
|
302 |
+
self.cv2 = GhostConv(c_, c_, 1, 1)
|
303 |
+
self.cv3 = GhostConv(c_, c_, 3, 2)
|
304 |
+
self.cv4 = GhostConv(2 * c_, c2, 1, 1)
|
305 |
+
|
306 |
+
|
307 |
+
class BottleneckCSPA(nn.Module):
|
308 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
309 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
310 |
+
super(BottleneckCSPA, self).__init__()
|
311 |
+
c_ = int(c2 * e) # hidden channels
|
312 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
313 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
314 |
+
self.cv3 = Conv(2 * c_, c2, 1, 1)
|
315 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
316 |
+
|
317 |
+
def forward(self, x):
|
318 |
+
y1 = self.m(self.cv1(x))
|
319 |
+
y2 = self.cv2(x)
|
320 |
+
return self.cv3(torch.cat((y1, y2), dim=1))
|
321 |
+
|
322 |
+
|
323 |
+
class BottleneckCSPB(nn.Module):
|
324 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
325 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
326 |
+
super(BottleneckCSPB, self).__init__()
|
327 |
+
c_ = int(c2) # hidden channels
|
328 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
329 |
+
self.cv2 = Conv(c_, c_, 1, 1)
|
330 |
+
self.cv3 = Conv(2 * c_, c2, 1, 1)
|
331 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
332 |
+
|
333 |
+
def forward(self, x):
|
334 |
+
x1 = self.cv1(x)
|
335 |
+
y1 = self.m(x1)
|
336 |
+
y2 = self.cv2(x1)
|
337 |
+
return self.cv3(torch.cat((y1, y2), dim=1))
|
338 |
+
|
339 |
+
|
340 |
+
class BottleneckCSPC(nn.Module):
|
341 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
342 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
343 |
+
super(BottleneckCSPC, self).__init__()
|
344 |
+
c_ = int(c2 * e) # hidden channels
|
345 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
346 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
347 |
+
self.cv3 = Conv(c_, c_, 1, 1)
|
348 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
349 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
350 |
+
|
351 |
+
def forward(self, x):
|
352 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
353 |
+
y2 = self.cv2(x)
|
354 |
+
return self.cv4(torch.cat((y1, y2), dim=1))
|
355 |
+
|
356 |
+
|
357 |
+
class ResCSPA(BottleneckCSPA):
|
358 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
359 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
360 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
361 |
+
c_ = int(c2 * e) # hidden channels
|
362 |
+
self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
363 |
+
|
364 |
+
|
365 |
+
class ResCSPB(BottleneckCSPB):
|
366 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
367 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
368 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
369 |
+
c_ = int(c2) # hidden channels
|
370 |
+
self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
371 |
+
|
372 |
+
|
373 |
+
class ResCSPC(BottleneckCSPC):
|
374 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
375 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
376 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
377 |
+
c_ = int(c2 * e) # hidden channels
|
378 |
+
self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
379 |
+
|
380 |
+
|
381 |
+
class ResXCSPA(ResCSPA):
|
382 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
383 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
384 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
385 |
+
c_ = int(c2 * e) # hidden channels
|
386 |
+
self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
387 |
+
|
388 |
+
|
389 |
+
class ResXCSPB(ResCSPB):
|
390 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
391 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
392 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
393 |
+
c_ = int(c2) # hidden channels
|
394 |
+
self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
395 |
+
|
396 |
+
|
397 |
+
class ResXCSPC(ResCSPC):
|
398 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
399 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
400 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
401 |
+
c_ = int(c2 * e) # hidden channels
|
402 |
+
self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
403 |
+
|
404 |
+
|
405 |
+
class GhostCSPA(BottleneckCSPA):
|
406 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
407 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
408 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
409 |
+
c_ = int(c2 * e) # hidden channels
|
410 |
+
self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
|
411 |
+
|
412 |
+
|
413 |
+
class GhostCSPB(BottleneckCSPB):
|
414 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
415 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
416 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
417 |
+
c_ = int(c2) # hidden channels
|
418 |
+
self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
|
419 |
+
|
420 |
+
|
421 |
+
class GhostCSPC(BottleneckCSPC):
|
422 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
423 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
424 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
425 |
+
c_ = int(c2 * e) # hidden channels
|
426 |
+
self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
|
427 |
+
|
428 |
+
##### end of cspnet #####
|
429 |
+
|
430 |
+
|
431 |
+
##### yolor #####
|
432 |
+
|
433 |
+
class ImplicitA(nn.Module):
|
434 |
+
def __init__(self, channel, mean=0., std=.02):
|
435 |
+
super(ImplicitA, self).__init__()
|
436 |
+
self.channel = channel
|
437 |
+
self.mean = mean
|
438 |
+
self.std = std
|
439 |
+
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
440 |
+
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
|
441 |
+
|
442 |
+
def forward(self, x):
|
443 |
+
return self.implicit + x
|
444 |
+
|
445 |
+
|
446 |
+
class ImplicitM(nn.Module):
|
447 |
+
def __init__(self, channel, mean=0., std=.02):
|
448 |
+
super(ImplicitM, self).__init__()
|
449 |
+
self.channel = channel
|
450 |
+
self.mean = mean
|
451 |
+
self.std = std
|
452 |
+
self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
|
453 |
+
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
|
454 |
+
|
455 |
+
def forward(self, x):
|
456 |
+
return self.implicit * x
|
457 |
+
|
458 |
+
##### end of yolor #####
|
459 |
+
|
460 |
+
|
461 |
+
##### repvgg #####
|
462 |
+
|
463 |
+
class RepConv(nn.Module):
|
464 |
+
# Represented convolution
|
465 |
+
# https://arxiv.org/abs/2101.03697
|
466 |
+
|
467 |
+
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
|
468 |
+
super(RepConv, self).__init__()
|
469 |
+
|
470 |
+
self.deploy = deploy
|
471 |
+
self.groups = g
|
472 |
+
self.in_channels = c1
|
473 |
+
self.out_channels = c2
|
474 |
+
|
475 |
+
assert k == 3
|
476 |
+
assert autopad(k, p) == 1
|
477 |
+
|
478 |
+
padding_11 = autopad(k, p) - k // 2
|
479 |
+
|
480 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
481 |
+
|
482 |
+
if deploy:
|
483 |
+
self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
|
484 |
+
|
485 |
+
else:
|
486 |
+
self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
|
487 |
+
|
488 |
+
self.rbr_dense = nn.Sequential(
|
489 |
+
nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
|
490 |
+
nn.BatchNorm2d(num_features=c2),
|
491 |
+
)
|
492 |
+
|
493 |
+
self.rbr_1x1 = nn.Sequential(
|
494 |
+
nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
|
495 |
+
nn.BatchNorm2d(num_features=c2),
|
496 |
+
)
|
497 |
+
|
498 |
+
def forward(self, inputs):
|
499 |
+
if hasattr(self, "rbr_reparam"):
|
500 |
+
return self.act(self.rbr_reparam(inputs))
|
501 |
+
|
502 |
+
if self.rbr_identity is None:
|
503 |
+
id_out = 0
|
504 |
+
else:
|
505 |
+
id_out = self.rbr_identity(inputs)
|
506 |
+
|
507 |
+
return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
|
508 |
+
|
509 |
+
def get_equivalent_kernel_bias(self):
|
510 |
+
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
|
511 |
+
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
|
512 |
+
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
|
513 |
+
return (
|
514 |
+
kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
|
515 |
+
bias3x3 + bias1x1 + biasid,
|
516 |
+
)
|
517 |
+
|
518 |
+
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
519 |
+
if kernel1x1 is None:
|
520 |
+
return 0
|
521 |
+
else:
|
522 |
+
return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
523 |
+
|
524 |
+
def _fuse_bn_tensor(self, branch):
|
525 |
+
if branch is None:
|
526 |
+
return 0, 0
|
527 |
+
if isinstance(branch, nn.Sequential):
|
528 |
+
kernel = branch[0].weight
|
529 |
+
running_mean = branch[1].running_mean
|
530 |
+
running_var = branch[1].running_var
|
531 |
+
gamma = branch[1].weight
|
532 |
+
beta = branch[1].bias
|
533 |
+
eps = branch[1].eps
|
534 |
+
else:
|
535 |
+
assert isinstance(branch, nn.BatchNorm2d)
|
536 |
+
if not hasattr(self, "id_tensor"):
|
537 |
+
input_dim = self.in_channels // self.groups
|
538 |
+
kernel_value = np.zeros(
|
539 |
+
(self.in_channels, input_dim, 3, 3), dtype=np.float32
|
540 |
+
)
|
541 |
+
for i in range(self.in_channels):
|
542 |
+
kernel_value[i, i % input_dim, 1, 1] = 1
|
543 |
+
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
544 |
+
kernel = self.id_tensor
|
545 |
+
running_mean = branch.running_mean
|
546 |
+
running_var = branch.running_var
|
547 |
+
gamma = branch.weight
|
548 |
+
beta = branch.bias
|
549 |
+
eps = branch.eps
|
550 |
+
std = (running_var + eps).sqrt()
|
551 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
552 |
+
return kernel * t, beta - running_mean * gamma / std
|
553 |
+
|
554 |
+
def repvgg_convert(self):
|
555 |
+
kernel, bias = self.get_equivalent_kernel_bias()
|
556 |
+
return (
|
557 |
+
kernel.detach().cpu().numpy(),
|
558 |
+
bias.detach().cpu().numpy(),
|
559 |
+
)
|
560 |
+
|
561 |
+
def fuse_conv_bn(self, conv, bn):
|
562 |
+
|
563 |
+
std = (bn.running_var + bn.eps).sqrt()
|
564 |
+
bias = bn.bias - bn.running_mean * bn.weight / std
|
565 |
+
|
566 |
+
t = (bn.weight / std).reshape(-1, 1, 1, 1)
|
567 |
+
weights = conv.weight * t
|
568 |
+
|
569 |
+
bn = nn.Identity()
|
570 |
+
conv = nn.Conv2d(in_channels = conv.in_channels,
|
571 |
+
out_channels = conv.out_channels,
|
572 |
+
kernel_size = conv.kernel_size,
|
573 |
+
stride=conv.stride,
|
574 |
+
padding = conv.padding,
|
575 |
+
dilation = conv.dilation,
|
576 |
+
groups = conv.groups,
|
577 |
+
bias = True,
|
578 |
+
padding_mode = conv.padding_mode)
|
579 |
+
|
580 |
+
conv.weight = torch.nn.Parameter(weights)
|
581 |
+
conv.bias = torch.nn.Parameter(bias)
|
582 |
+
return conv
|
583 |
+
|
584 |
+
def fuse_repvgg_block(self):
|
585 |
+
if self.deploy:
|
586 |
+
return
|
587 |
+
print(f"RepConv.fuse_repvgg_block")
|
588 |
+
|
589 |
+
self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
|
590 |
+
|
591 |
+
self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
|
592 |
+
rbr_1x1_bias = self.rbr_1x1.bias
|
593 |
+
weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
|
594 |
+
|
595 |
+
# Fuse self.rbr_identity
|
596 |
+
if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
|
597 |
+
# print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
|
598 |
+
identity_conv_1x1 = nn.Conv2d(
|
599 |
+
in_channels=self.in_channels,
|
600 |
+
out_channels=self.out_channels,
|
601 |
+
kernel_size=1,
|
602 |
+
stride=1,
|
603 |
+
padding=0,
|
604 |
+
groups=self.groups,
|
605 |
+
bias=False)
|
606 |
+
identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
|
607 |
+
identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
|
608 |
+
# print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
|
609 |
+
identity_conv_1x1.weight.data.fill_(0.0)
|
610 |
+
identity_conv_1x1.weight.data.fill_diagonal_(1.0)
|
611 |
+
identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
|
612 |
+
# print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
|
613 |
+
|
614 |
+
identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
|
615 |
+
bias_identity_expanded = identity_conv_1x1.bias
|
616 |
+
weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
|
617 |
+
else:
|
618 |
+
# print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
|
619 |
+
bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
|
620 |
+
weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
|
621 |
+
|
622 |
+
|
623 |
+
#print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
|
624 |
+
#print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
|
625 |
+
#print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
|
626 |
+
|
627 |
+
self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
|
628 |
+
self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
|
629 |
+
|
630 |
+
self.rbr_reparam = self.rbr_dense
|
631 |
+
self.deploy = True
|
632 |
+
|
633 |
+
if self.rbr_identity is not None:
|
634 |
+
del self.rbr_identity
|
635 |
+
self.rbr_identity = None
|
636 |
+
|
637 |
+
if self.rbr_1x1 is not None:
|
638 |
+
del self.rbr_1x1
|
639 |
+
self.rbr_1x1 = None
|
640 |
+
|
641 |
+
if self.rbr_dense is not None:
|
642 |
+
del self.rbr_dense
|
643 |
+
self.rbr_dense = None
|
644 |
+
|
645 |
+
|
646 |
+
class RepBottleneck(Bottleneck):
|
647 |
+
# Standard bottleneck
|
648 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
649 |
+
super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
|
650 |
+
c_ = int(c2 * e) # hidden channels
|
651 |
+
self.cv2 = RepConv(c_, c2, 3, 1, g=g)
|
652 |
+
|
653 |
+
|
654 |
+
class RepBottleneckCSPA(BottleneckCSPA):
|
655 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
656 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
657 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
658 |
+
c_ = int(c2 * e) # hidden channels
|
659 |
+
self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
660 |
+
|
661 |
+
|
662 |
+
class RepBottleneckCSPB(BottleneckCSPB):
|
663 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
664 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
665 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
666 |
+
c_ = int(c2) # hidden channels
|
667 |
+
self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
668 |
+
|
669 |
+
|
670 |
+
class RepBottleneckCSPC(BottleneckCSPC):
|
671 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
672 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
673 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
674 |
+
c_ = int(c2 * e) # hidden channels
|
675 |
+
self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
676 |
+
|
677 |
+
|
678 |
+
class RepRes(Res):
|
679 |
+
# Standard bottleneck
|
680 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
681 |
+
super().__init__(c1, c2, shortcut, g, e)
|
682 |
+
c_ = int(c2 * e) # hidden channels
|
683 |
+
self.cv2 = RepConv(c_, c_, 3, 1, g=g)
|
684 |
+
|
685 |
+
|
686 |
+
class RepResCSPA(ResCSPA):
|
687 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
688 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
689 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
690 |
+
c_ = int(c2 * e) # hidden channels
|
691 |
+
self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
692 |
+
|
693 |
+
|
694 |
+
class RepResCSPB(ResCSPB):
|
695 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
696 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
697 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
698 |
+
c_ = int(c2) # hidden channels
|
699 |
+
self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
700 |
+
|
701 |
+
|
702 |
+
class RepResCSPC(ResCSPC):
|
703 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
704 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
705 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
706 |
+
c_ = int(c2 * e) # hidden channels
|
707 |
+
self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
708 |
+
|
709 |
+
|
710 |
+
class RepResX(ResX):
|
711 |
+
# Standard bottleneck
|
712 |
+
def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
713 |
+
super().__init__(c1, c2, shortcut, g, e)
|
714 |
+
c_ = int(c2 * e) # hidden channels
|
715 |
+
self.cv2 = RepConv(c_, c_, 3, 1, g=g)
|
716 |
+
|
717 |
+
|
718 |
+
class RepResXCSPA(ResXCSPA):
|
719 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
720 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
721 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
722 |
+
c_ = int(c2 * e) # hidden channels
|
723 |
+
self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
724 |
+
|
725 |
+
|
726 |
+
class RepResXCSPB(ResXCSPB):
|
727 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
728 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
729 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
730 |
+
c_ = int(c2) # hidden channels
|
731 |
+
self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
732 |
+
|
733 |
+
|
734 |
+
class RepResXCSPC(ResXCSPC):
|
735 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
736 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
737 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
738 |
+
c_ = int(c2 * e) # hidden channels
|
739 |
+
self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
|
740 |
+
|
741 |
+
##### end of repvgg #####
|
742 |
+
|
743 |
+
|
744 |
+
##### transformer #####
|
745 |
+
|
746 |
+
class TransformerLayer(nn.Module):
|
747 |
+
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
748 |
+
def __init__(self, c, num_heads):
|
749 |
+
super().__init__()
|
750 |
+
self.q = nn.Linear(c, c, bias=False)
|
751 |
+
self.k = nn.Linear(c, c, bias=False)
|
752 |
+
self.v = nn.Linear(c, c, bias=False)
|
753 |
+
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
754 |
+
self.fc1 = nn.Linear(c, c, bias=False)
|
755 |
+
self.fc2 = nn.Linear(c, c, bias=False)
|
756 |
+
|
757 |
+
def forward(self, x):
|
758 |
+
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
759 |
+
x = self.fc2(self.fc1(x)) + x
|
760 |
+
return x
|
761 |
+
|
762 |
+
|
763 |
+
class TransformerBlock(nn.Module):
|
764 |
+
# Vision Transformer https://arxiv.org/abs/2010.11929
|
765 |
+
def __init__(self, c1, c2, num_heads, num_layers):
|
766 |
+
super().__init__()
|
767 |
+
self.conv = None
|
768 |
+
if c1 != c2:
|
769 |
+
self.conv = Conv(c1, c2)
|
770 |
+
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
771 |
+
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
|
772 |
+
self.c2 = c2
|
773 |
+
|
774 |
+
def forward(self, x):
|
775 |
+
if self.conv is not None:
|
776 |
+
x = self.conv(x)
|
777 |
+
b, _, w, h = x.shape
|
778 |
+
p = x.flatten(2)
|
779 |
+
p = p.unsqueeze(0)
|
780 |
+
p = p.transpose(0, 3)
|
781 |
+
p = p.squeeze(3)
|
782 |
+
e = self.linear(p)
|
783 |
+
x = p + e
|
784 |
+
|
785 |
+
x = self.tr(x)
|
786 |
+
x = x.unsqueeze(3)
|
787 |
+
x = x.transpose(0, 3)
|
788 |
+
x = x.reshape(b, self.c2, w, h)
|
789 |
+
return x
|
790 |
+
|
791 |
+
##### end of transformer #####
|
792 |
+
|
793 |
+
|
794 |
+
##### yolov5 #####
|
795 |
+
|
796 |
+
class Focus(nn.Module):
|
797 |
+
# Focus wh information into c-space
|
798 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
799 |
+
super(Focus, self).__init__()
|
800 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
801 |
+
# self.contract = Contract(gain=2)
|
802 |
+
|
803 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
804 |
+
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
805 |
+
# return self.conv(self.contract(x))
|
806 |
+
|
807 |
+
|
808 |
+
class SPPF(nn.Module):
|
809 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
810 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
811 |
+
super().__init__()
|
812 |
+
c_ = c1 // 2 # hidden channels
|
813 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
814 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
815 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
816 |
+
|
817 |
+
def forward(self, x):
|
818 |
+
x = self.cv1(x)
|
819 |
+
y1 = self.m(x)
|
820 |
+
y2 = self.m(y1)
|
821 |
+
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
|
822 |
+
|
823 |
+
|
824 |
+
class Contract(nn.Module):
|
825 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
826 |
+
def __init__(self, gain=2):
|
827 |
+
super().__init__()
|
828 |
+
self.gain = gain
|
829 |
+
|
830 |
+
def forward(self, x):
|
831 |
+
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
|
832 |
+
s = self.gain
|
833 |
+
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
|
834 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
835 |
+
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
|
836 |
+
|
837 |
+
|
838 |
+
class Expand(nn.Module):
|
839 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
840 |
+
def __init__(self, gain=2):
|
841 |
+
super().__init__()
|
842 |
+
self.gain = gain
|
843 |
+
|
844 |
+
def forward(self, x):
|
845 |
+
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
846 |
+
s = self.gain
|
847 |
+
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
|
848 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
849 |
+
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
|
850 |
+
|
851 |
+
|
852 |
+
class NMS(nn.Module):
|
853 |
+
# Non-Maximum Suppression (NMS) module
|
854 |
+
conf = 0.25 # confidence threshold
|
855 |
+
iou = 0.45 # IoU threshold
|
856 |
+
classes = None # (optional list) filter by class
|
857 |
+
|
858 |
+
def __init__(self):
|
859 |
+
super(NMS, self).__init__()
|
860 |
+
|
861 |
+
def forward(self, x):
|
862 |
+
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
863 |
+
|
864 |
+
|
865 |
+
class autoShape(nn.Module):
|
866 |
+
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
867 |
+
conf = 0.25 # NMS confidence threshold
|
868 |
+
iou = 0.45 # NMS IoU threshold
|
869 |
+
classes = None # (optional list) filter by class
|
870 |
+
|
871 |
+
def __init__(self, model):
|
872 |
+
super(autoShape, self).__init__()
|
873 |
+
self.model = model.eval()
|
874 |
+
|
875 |
+
def autoshape(self):
|
876 |
+
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
877 |
+
return self
|
878 |
+
|
879 |
+
@torch.no_grad()
|
880 |
+
def forward(self, imgs, size=640, augment=False, profile=False):
|
881 |
+
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
882 |
+
# filename: imgs = 'data/samples/zidane.jpg'
|
883 |
+
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
884 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
885 |
+
# PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
|
886 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
887 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
888 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
889 |
+
|
890 |
+
t = [time_synchronized()]
|
891 |
+
p = next(self.model.parameters()) # for device and type
|
892 |
+
if isinstance(imgs, torch.Tensor): # torch
|
893 |
+
with amp.autocast(enabled=p.device.type != 'cpu'):
|
894 |
+
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
895 |
+
|
896 |
+
# Pre-process
|
897 |
+
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
898 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
899 |
+
for i, im in enumerate(imgs):
|
900 |
+
f = f'image{i}' # filename
|
901 |
+
if isinstance(im, str): # filename or uri
|
902 |
+
im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
|
903 |
+
elif isinstance(im, Image.Image): # PIL Image
|
904 |
+
im, f = np.asarray(im), getattr(im, 'filename', f) or f
|
905 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
906 |
+
if im.shape[0] < 5: # image in CHW
|
907 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
908 |
+
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
909 |
+
s = im.shape[:2] # HWC
|
910 |
+
shape0.append(s) # image shape
|
911 |
+
g = (size / max(s)) # gain
|
912 |
+
shape1.append([y * g for y in s])
|
913 |
+
imgs[i] = im # update
|
914 |
+
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
915 |
+
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
916 |
+
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
917 |
+
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
918 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
919 |
+
t.append(time_synchronized())
|
920 |
+
|
921 |
+
with amp.autocast(enabled=p.device.type != 'cpu'):
|
922 |
+
# Inference
|
923 |
+
y = self.model(x, augment, profile)[0] # forward
|
924 |
+
t.append(time_synchronized())
|
925 |
+
|
926 |
+
# Post-process
|
927 |
+
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
928 |
+
for i in range(n):
|
929 |
+
scale_coords(shape1, y[i][:, :4], shape0[i])
|
930 |
+
|
931 |
+
t.append(time_synchronized())
|
932 |
+
return Detections(imgs, y, files, t, self.names, x.shape)
|
933 |
+
|
934 |
+
|
935 |
+
class Detections:
|
936 |
+
# detections class for YOLOv5 inference results
|
937 |
+
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
|
938 |
+
super(Detections, self).__init__()
|
939 |
+
d = pred[0].device # device
|
940 |
+
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
941 |
+
self.imgs = imgs # list of images as numpy arrays
|
942 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
943 |
+
self.names = names # class names
|
944 |
+
self.files = files # image filenames
|
945 |
+
self.xyxy = pred # xyxy pixels
|
946 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
947 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
948 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
949 |
+
self.n = len(self.pred) # number of images (batch size)
|
950 |
+
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
951 |
+
self.s = shape # inference BCHW shape
|
952 |
+
|
953 |
+
def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
|
954 |
+
colors = color_list()
|
955 |
+
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
956 |
+
str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
957 |
+
if pred is not None:
|
958 |
+
for c in pred[:, -1].unique():
|
959 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
960 |
+
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
961 |
+
if show or save or render:
|
962 |
+
for *box, conf, cls in pred: # xyxy, confidence, class
|
963 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
964 |
+
plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
|
965 |
+
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
966 |
+
if pprint:
|
967 |
+
print(str.rstrip(', '))
|
968 |
+
if show:
|
969 |
+
img.show(self.files[i]) # show
|
970 |
+
if save:
|
971 |
+
f = self.files[i]
|
972 |
+
img.save(Path(save_dir) / f) # save
|
973 |
+
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
|
974 |
+
if render:
|
975 |
+
self.imgs[i] = np.asarray(img)
|
976 |
+
|
977 |
+
def print(self):
|
978 |
+
self.display(pprint=True) # print results
|
979 |
+
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
|
980 |
+
|
981 |
+
def show(self):
|
982 |
+
self.display(show=True) # show results
|
983 |
+
|
984 |
+
def save(self, save_dir='runs/hub/exp'):
|
985 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
|
986 |
+
Path(save_dir).mkdir(parents=True, exist_ok=True)
|
987 |
+
self.display(save=True, save_dir=save_dir) # save results
|
988 |
+
|
989 |
+
def render(self):
|
990 |
+
self.display(render=True) # render results
|
991 |
+
return self.imgs
|
992 |
+
|
993 |
+
def pandas(self):
|
994 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
995 |
+
new = copy(self) # return copy
|
996 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
997 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
998 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
999 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
1000 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
1001 |
+
return new
|
1002 |
+
|
1003 |
+
def tolist(self):
|
1004 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
1005 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
|
1006 |
+
for d in x:
|
1007 |
+
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
1008 |
+
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
1009 |
+
return x
|
1010 |
+
|
1011 |
+
def __len__(self):
|
1012 |
+
return self.n
|
1013 |
+
|
1014 |
+
|
1015 |
+
class Classify(nn.Module):
|
1016 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
1017 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
1018 |
+
super(Classify, self).__init__()
|
1019 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
1020 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
1021 |
+
self.flat = nn.Flatten()
|
1022 |
+
|
1023 |
+
def forward(self, x):
|
1024 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
1025 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
1026 |
+
|
1027 |
+
##### end of yolov5 ######
|
1028 |
+
|
1029 |
+
|
1030 |
+
##### orepa #####
|
1031 |
+
|
1032 |
+
def transI_fusebn(kernel, bn):
|
1033 |
+
gamma = bn.weight
|
1034 |
+
std = (bn.running_var + bn.eps).sqrt()
|
1035 |
+
return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
|
1036 |
+
|
1037 |
+
|
1038 |
+
class ConvBN(nn.Module):
|
1039 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
1040 |
+
stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
|
1041 |
+
super().__init__()
|
1042 |
+
if nonlinear is None:
|
1043 |
+
self.nonlinear = nn.Identity()
|
1044 |
+
else:
|
1045 |
+
self.nonlinear = nonlinear
|
1046 |
+
if deploy:
|
1047 |
+
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
|
1048 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
|
1049 |
+
else:
|
1050 |
+
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
|
1051 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
|
1052 |
+
self.bn = nn.BatchNorm2d(num_features=out_channels)
|
1053 |
+
|
1054 |
+
def forward(self, x):
|
1055 |
+
if hasattr(self, 'bn'):
|
1056 |
+
return self.nonlinear(self.bn(self.conv(x)))
|
1057 |
+
else:
|
1058 |
+
return self.nonlinear(self.conv(x))
|
1059 |
+
|
1060 |
+
def switch_to_deploy(self):
|
1061 |
+
kernel, bias = transI_fusebn(self.conv.weight, self.bn)
|
1062 |
+
conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
|
1063 |
+
stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
|
1064 |
+
conv.weight.data = kernel
|
1065 |
+
conv.bias.data = bias
|
1066 |
+
for para in self.parameters():
|
1067 |
+
para.detach_()
|
1068 |
+
self.__delattr__('conv')
|
1069 |
+
self.__delattr__('bn')
|
1070 |
+
self.conv = conv
|
1071 |
+
|
1072 |
+
class OREPA_3x3_RepConv(nn.Module):
|
1073 |
+
|
1074 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
1075 |
+
stride=1, padding=0, dilation=1, groups=1,
|
1076 |
+
internal_channels_1x1_3x3=None,
|
1077 |
+
deploy=False, nonlinear=None, single_init=False):
|
1078 |
+
super(OREPA_3x3_RepConv, self).__init__()
|
1079 |
+
self.deploy = deploy
|
1080 |
+
|
1081 |
+
if nonlinear is None:
|
1082 |
+
self.nonlinear = nn.Identity()
|
1083 |
+
else:
|
1084 |
+
self.nonlinear = nonlinear
|
1085 |
+
|
1086 |
+
self.kernel_size = kernel_size
|
1087 |
+
self.in_channels = in_channels
|
1088 |
+
self.out_channels = out_channels
|
1089 |
+
self.groups = groups
|
1090 |
+
assert padding == kernel_size // 2
|
1091 |
+
|
1092 |
+
self.stride = stride
|
1093 |
+
self.padding = padding
|
1094 |
+
self.dilation = dilation
|
1095 |
+
|
1096 |
+
self.branch_counter = 0
|
1097 |
+
|
1098 |
+
self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
|
1099 |
+
nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
|
1100 |
+
self.branch_counter += 1
|
1101 |
+
|
1102 |
+
|
1103 |
+
if groups < out_channels:
|
1104 |
+
self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
|
1105 |
+
self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
|
1106 |
+
nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
|
1107 |
+
nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
|
1108 |
+
self.weight_rbr_avg_conv.data
|
1109 |
+
self.weight_rbr_pfir_conv.data
|
1110 |
+
self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
|
1111 |
+
self.branch_counter += 1
|
1112 |
+
|
1113 |
+
else:
|
1114 |
+
raise NotImplementedError
|
1115 |
+
self.branch_counter += 1
|
1116 |
+
|
1117 |
+
if internal_channels_1x1_3x3 is None:
|
1118 |
+
internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
|
1119 |
+
|
1120 |
+
if internal_channels_1x1_3x3 == in_channels:
|
1121 |
+
self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
|
1122 |
+
id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
|
1123 |
+
for i in range(in_channels):
|
1124 |
+
id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
|
1125 |
+
id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
|
1126 |
+
self.register_buffer('id_tensor', id_tensor)
|
1127 |
+
|
1128 |
+
else:
|
1129 |
+
self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
|
1130 |
+
nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
|
1131 |
+
self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
|
1132 |
+
nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
|
1133 |
+
self.branch_counter += 1
|
1134 |
+
|
1135 |
+
expand_ratio = 8
|
1136 |
+
self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
|
1137 |
+
self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
|
1138 |
+
nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
|
1139 |
+
nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
|
1140 |
+
self.branch_counter += 1
|
1141 |
+
|
1142 |
+
if out_channels == in_channels and stride == 1:
|
1143 |
+
self.branch_counter += 1
|
1144 |
+
|
1145 |
+
self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
|
1146 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
1147 |
+
|
1148 |
+
self.fre_init()
|
1149 |
+
|
1150 |
+
nn.init.constant_(self.vector[0, :], 0.25) #origin
|
1151 |
+
nn.init.constant_(self.vector[1, :], 0.25) #avg
|
1152 |
+
nn.init.constant_(self.vector[2, :], 0.0) #prior
|
1153 |
+
nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
|
1154 |
+
nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
|
1155 |
+
|
1156 |
+
|
1157 |
+
def fre_init(self):
|
1158 |
+
prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
|
1159 |
+
half_fg = self.out_channels/2
|
1160 |
+
for i in range(self.out_channels):
|
1161 |
+
for h in range(3):
|
1162 |
+
for w in range(3):
|
1163 |
+
if i < half_fg:
|
1164 |
+
prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
|
1165 |
+
else:
|
1166 |
+
prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
|
1167 |
+
|
1168 |
+
self.register_buffer('weight_rbr_prior', prior_tensor)
|
1169 |
+
|
1170 |
+
def weight_gen(self):
|
1171 |
+
|
1172 |
+
weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
|
1173 |
+
|
1174 |
+
weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
|
1175 |
+
|
1176 |
+
weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
|
1177 |
+
|
1178 |
+
weight_rbr_1x1_kxk_conv1 = None
|
1179 |
+
if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
|
1180 |
+
weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
|
1181 |
+
elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
|
1182 |
+
weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
|
1183 |
+
else:
|
1184 |
+
raise NotImplementedError
|
1185 |
+
weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
|
1186 |
+
|
1187 |
+
if self.groups > 1:
|
1188 |
+
g = self.groups
|
1189 |
+
t, ig = weight_rbr_1x1_kxk_conv1.size()
|
1190 |
+
o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
|
1191 |
+
weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
|
1192 |
+
weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
|
1193 |
+
weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
|
1194 |
+
else:
|
1195 |
+
weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
|
1196 |
+
|
1197 |
+
weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
|
1198 |
+
|
1199 |
+
weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
|
1200 |
+
weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
|
1201 |
+
|
1202 |
+
weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
|
1203 |
+
|
1204 |
+
return weight
|
1205 |
+
|
1206 |
+
def dwsc2full(self, weight_dw, weight_pw, groups):
|
1207 |
+
|
1208 |
+
t, ig, h, w = weight_dw.size()
|
1209 |
+
o, _, _, _ = weight_pw.size()
|
1210 |
+
tg = int(t/groups)
|
1211 |
+
i = int(ig*groups)
|
1212 |
+
weight_dw = weight_dw.view(groups, tg, ig, h, w)
|
1213 |
+
weight_pw = weight_pw.squeeze().view(o, groups, tg)
|
1214 |
+
|
1215 |
+
weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
|
1216 |
+
return weight_dsc.view(o, i, h, w)
|
1217 |
+
|
1218 |
+
def forward(self, inputs):
|
1219 |
+
weight = self.weight_gen()
|
1220 |
+
out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
|
1221 |
+
|
1222 |
+
return self.nonlinear(self.bn(out))
|
1223 |
+
|
1224 |
+
class RepConv_OREPA(nn.Module):
|
1225 |
+
|
1226 |
+
def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
|
1227 |
+
super(RepConv_OREPA, self).__init__()
|
1228 |
+
self.deploy = deploy
|
1229 |
+
self.groups = groups
|
1230 |
+
self.in_channels = c1
|
1231 |
+
self.out_channels = c2
|
1232 |
+
|
1233 |
+
self.padding = padding
|
1234 |
+
self.dilation = dilation
|
1235 |
+
self.groups = groups
|
1236 |
+
|
1237 |
+
assert k == 3
|
1238 |
+
assert padding == 1
|
1239 |
+
|
1240 |
+
padding_11 = padding - k // 2
|
1241 |
+
|
1242 |
+
if nonlinear is None:
|
1243 |
+
self.nonlinearity = nn.Identity()
|
1244 |
+
else:
|
1245 |
+
self.nonlinearity = nonlinear
|
1246 |
+
|
1247 |
+
if use_se:
|
1248 |
+
self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
|
1249 |
+
else:
|
1250 |
+
self.se = nn.Identity()
|
1251 |
+
|
1252 |
+
if deploy:
|
1253 |
+
self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
|
1254 |
+
padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
|
1255 |
+
|
1256 |
+
else:
|
1257 |
+
self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
|
1258 |
+
self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
|
1259 |
+
self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
|
1260 |
+
print('RepVGG Block, identity = ', self.rbr_identity)
|
1261 |
+
|
1262 |
+
|
1263 |
+
def forward(self, inputs):
|
1264 |
+
if hasattr(self, 'rbr_reparam'):
|
1265 |
+
return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
|
1266 |
+
|
1267 |
+
if self.rbr_identity is None:
|
1268 |
+
id_out = 0
|
1269 |
+
else:
|
1270 |
+
id_out = self.rbr_identity(inputs)
|
1271 |
+
|
1272 |
+
out1 = self.rbr_dense(inputs)
|
1273 |
+
out2 = self.rbr_1x1(inputs)
|
1274 |
+
out3 = id_out
|
1275 |
+
out = out1 + out2 + out3
|
1276 |
+
|
1277 |
+
return self.nonlinearity(self.se(out))
|
1278 |
+
|
1279 |
+
|
1280 |
+
# Optional. This improves the accuracy and facilitates quantization.
|
1281 |
+
# 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
|
1282 |
+
# 2. Use like this.
|
1283 |
+
# loss = criterion(....)
|
1284 |
+
# for every RepVGGBlock blk:
|
1285 |
+
# loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
|
1286 |
+
# optimizer.zero_grad()
|
1287 |
+
# loss.backward()
|
1288 |
+
|
1289 |
+
# Not used for OREPA
|
1290 |
+
def get_custom_L2(self):
|
1291 |
+
K3 = self.rbr_dense.weight_gen()
|
1292 |
+
K1 = self.rbr_1x1.conv.weight
|
1293 |
+
t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
|
1294 |
+
t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
|
1295 |
+
|
1296 |
+
l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
|
1297 |
+
eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
|
1298 |
+
l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
|
1299 |
+
return l2_loss_eq_kernel + l2_loss_circle
|
1300 |
+
|
1301 |
+
def get_equivalent_kernel_bias(self):
|
1302 |
+
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
|
1303 |
+
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
|
1304 |
+
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
|
1305 |
+
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
1306 |
+
|
1307 |
+
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
1308 |
+
if kernel1x1 is None:
|
1309 |
+
return 0
|
1310 |
+
else:
|
1311 |
+
return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
|
1312 |
+
|
1313 |
+
def _fuse_bn_tensor(self, branch):
|
1314 |
+
if branch is None:
|
1315 |
+
return 0, 0
|
1316 |
+
if not isinstance(branch, nn.BatchNorm2d):
|
1317 |
+
if isinstance(branch, OREPA_3x3_RepConv):
|
1318 |
+
kernel = branch.weight_gen()
|
1319 |
+
elif isinstance(branch, ConvBN):
|
1320 |
+
kernel = branch.conv.weight
|
1321 |
+
else:
|
1322 |
+
raise NotImplementedError
|
1323 |
+
running_mean = branch.bn.running_mean
|
1324 |
+
running_var = branch.bn.running_var
|
1325 |
+
gamma = branch.bn.weight
|
1326 |
+
beta = branch.bn.bias
|
1327 |
+
eps = branch.bn.eps
|
1328 |
+
else:
|
1329 |
+
if not hasattr(self, 'id_tensor'):
|
1330 |
+
input_dim = self.in_channels // self.groups
|
1331 |
+
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
|
1332 |
+
for i in range(self.in_channels):
|
1333 |
+
kernel_value[i, i % input_dim, 1, 1] = 1
|
1334 |
+
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
1335 |
+
kernel = self.id_tensor
|
1336 |
+
running_mean = branch.running_mean
|
1337 |
+
running_var = branch.running_var
|
1338 |
+
gamma = branch.weight
|
1339 |
+
beta = branch.bias
|
1340 |
+
eps = branch.eps
|
1341 |
+
std = (running_var + eps).sqrt()
|
1342 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
1343 |
+
return kernel * t, beta - running_mean * gamma / std
|
1344 |
+
|
1345 |
+
def switch_to_deploy(self):
|
1346 |
+
if hasattr(self, 'rbr_reparam'):
|
1347 |
+
return
|
1348 |
+
print(f"RepConv_OREPA.switch_to_deploy")
|
1349 |
+
kernel, bias = self.get_equivalent_kernel_bias()
|
1350 |
+
self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
|
1351 |
+
kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
|
1352 |
+
padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
|
1353 |
+
self.rbr_reparam.weight.data = kernel
|
1354 |
+
self.rbr_reparam.bias.data = bias
|
1355 |
+
for para in self.parameters():
|
1356 |
+
para.detach_()
|
1357 |
+
self.__delattr__('rbr_dense')
|
1358 |
+
self.__delattr__('rbr_1x1')
|
1359 |
+
if hasattr(self, 'rbr_identity'):
|
1360 |
+
self.__delattr__('rbr_identity')
|
1361 |
+
|
1362 |
+
##### end of orepa #####
|
1363 |
+
|
1364 |
+
|
1365 |
+
##### swin transformer #####
|
1366 |
+
|
1367 |
+
class WindowAttention(nn.Module):
|
1368 |
+
|
1369 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
1370 |
+
|
1371 |
+
super().__init__()
|
1372 |
+
self.dim = dim
|
1373 |
+
self.window_size = window_size # Wh, Ww
|
1374 |
+
self.num_heads = num_heads
|
1375 |
+
head_dim = dim // num_heads
|
1376 |
+
self.scale = qk_scale or head_dim ** -0.5
|
1377 |
+
|
1378 |
+
# define a parameter table of relative position bias
|
1379 |
+
self.relative_position_bias_table = nn.Parameter(
|
1380 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
1381 |
+
|
1382 |
+
# get pair-wise relative position index for each token inside the window
|
1383 |
+
coords_h = torch.arange(self.window_size[0])
|
1384 |
+
coords_w = torch.arange(self.window_size[1])
|
1385 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
1386 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
1387 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
1388 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
1389 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
1390 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
1391 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
1392 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
1393 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
1394 |
+
|
1395 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
1396 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
1397 |
+
self.proj = nn.Linear(dim, dim)
|
1398 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
1399 |
+
|
1400 |
+
nn.init.normal_(self.relative_position_bias_table, std=.02)
|
1401 |
+
self.softmax = nn.Softmax(dim=-1)
|
1402 |
+
|
1403 |
+
def forward(self, x, mask=None):
|
1404 |
+
|
1405 |
+
B_, N, C = x.shape
|
1406 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
1407 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
1408 |
+
|
1409 |
+
q = q * self.scale
|
1410 |
+
attn = (q @ k.transpose(-2, -1))
|
1411 |
+
|
1412 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
1413 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
1414 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
1415 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
1416 |
+
|
1417 |
+
if mask is not None:
|
1418 |
+
nW = mask.shape[0]
|
1419 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
1420 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
1421 |
+
attn = self.softmax(attn)
|
1422 |
+
else:
|
1423 |
+
attn = self.softmax(attn)
|
1424 |
+
|
1425 |
+
attn = self.attn_drop(attn)
|
1426 |
+
|
1427 |
+
# print(attn.dtype, v.dtype)
|
1428 |
+
try:
|
1429 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
1430 |
+
except:
|
1431 |
+
#print(attn.dtype, v.dtype)
|
1432 |
+
x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
|
1433 |
+
x = self.proj(x)
|
1434 |
+
x = self.proj_drop(x)
|
1435 |
+
return x
|
1436 |
+
|
1437 |
+
class Mlp(nn.Module):
|
1438 |
+
|
1439 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
|
1440 |
+
super().__init__()
|
1441 |
+
out_features = out_features or in_features
|
1442 |
+
hidden_features = hidden_features or in_features
|
1443 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
1444 |
+
self.act = act_layer()
|
1445 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
1446 |
+
self.drop = nn.Dropout(drop)
|
1447 |
+
|
1448 |
+
def forward(self, x):
|
1449 |
+
x = self.fc1(x)
|
1450 |
+
x = self.act(x)
|
1451 |
+
x = self.drop(x)
|
1452 |
+
x = self.fc2(x)
|
1453 |
+
x = self.drop(x)
|
1454 |
+
return x
|
1455 |
+
|
1456 |
+
def window_partition(x, window_size):
|
1457 |
+
|
1458 |
+
B, H, W, C = x.shape
|
1459 |
+
assert H % window_size == 0, 'feature map h and w can not divide by window size'
|
1460 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
1461 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
1462 |
+
return windows
|
1463 |
+
|
1464 |
+
def window_reverse(windows, window_size, H, W):
|
1465 |
+
|
1466 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
1467 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
1468 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
1469 |
+
return x
|
1470 |
+
|
1471 |
+
|
1472 |
+
class SwinTransformerLayer(nn.Module):
|
1473 |
+
|
1474 |
+
def __init__(self, dim, num_heads, window_size=8, shift_size=0,
|
1475 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
1476 |
+
act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
|
1477 |
+
super().__init__()
|
1478 |
+
self.dim = dim
|
1479 |
+
self.num_heads = num_heads
|
1480 |
+
self.window_size = window_size
|
1481 |
+
self.shift_size = shift_size
|
1482 |
+
self.mlp_ratio = mlp_ratio
|
1483 |
+
# if min(self.input_resolution) <= self.window_size:
|
1484 |
+
# # if window size is larger than input resolution, we don't partition windows
|
1485 |
+
# self.shift_size = 0
|
1486 |
+
# self.window_size = min(self.input_resolution)
|
1487 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
1488 |
+
|
1489 |
+
self.norm1 = norm_layer(dim)
|
1490 |
+
self.attn = WindowAttention(
|
1491 |
+
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
|
1492 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
1493 |
+
|
1494 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
1495 |
+
self.norm2 = norm_layer(dim)
|
1496 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
1497 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
1498 |
+
|
1499 |
+
def create_mask(self, H, W):
|
1500 |
+
# calculate attention mask for SW-MSA
|
1501 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
1502 |
+
h_slices = (slice(0, -self.window_size),
|
1503 |
+
slice(-self.window_size, -self.shift_size),
|
1504 |
+
slice(-self.shift_size, None))
|
1505 |
+
w_slices = (slice(0, -self.window_size),
|
1506 |
+
slice(-self.window_size, -self.shift_size),
|
1507 |
+
slice(-self.shift_size, None))
|
1508 |
+
cnt = 0
|
1509 |
+
for h in h_slices:
|
1510 |
+
for w in w_slices:
|
1511 |
+
img_mask[:, h, w, :] = cnt
|
1512 |
+
cnt += 1
|
1513 |
+
|
1514 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
1515 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
1516 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
1517 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
1518 |
+
|
1519 |
+
return attn_mask
|
1520 |
+
|
1521 |
+
def forward(self, x):
|
1522 |
+
# reshape x[b c h w] to x[b l c]
|
1523 |
+
_, _, H_, W_ = x.shape
|
1524 |
+
|
1525 |
+
Padding = False
|
1526 |
+
if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
|
1527 |
+
Padding = True
|
1528 |
+
# print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
|
1529 |
+
pad_r = (self.window_size - W_ % self.window_size) % self.window_size
|
1530 |
+
pad_b = (self.window_size - H_ % self.window_size) % self.window_size
|
1531 |
+
x = F.pad(x, (0, pad_r, 0, pad_b))
|
1532 |
+
|
1533 |
+
# print('2', x.shape)
|
1534 |
+
B, C, H, W = x.shape
|
1535 |
+
L = H * W
|
1536 |
+
x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
|
1537 |
+
|
1538 |
+
# create mask from init to forward
|
1539 |
+
if self.shift_size > 0:
|
1540 |
+
attn_mask = self.create_mask(H, W).to(x.device)
|
1541 |
+
else:
|
1542 |
+
attn_mask = None
|
1543 |
+
|
1544 |
+
shortcut = x
|
1545 |
+
x = self.norm1(x)
|
1546 |
+
x = x.view(B, H, W, C)
|
1547 |
+
|
1548 |
+
# cyclic shift
|
1549 |
+
if self.shift_size > 0:
|
1550 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
1551 |
+
else:
|
1552 |
+
shifted_x = x
|
1553 |
+
|
1554 |
+
# partition windows
|
1555 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
1556 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
1557 |
+
|
1558 |
+
# W-MSA/SW-MSA
|
1559 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
1560 |
+
|
1561 |
+
# merge windows
|
1562 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
1563 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
1564 |
+
|
1565 |
+
# reverse cyclic shift
|
1566 |
+
if self.shift_size > 0:
|
1567 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
1568 |
+
else:
|
1569 |
+
x = shifted_x
|
1570 |
+
x = x.view(B, H * W, C)
|
1571 |
+
|
1572 |
+
# FFN
|
1573 |
+
x = shortcut + self.drop_path(x)
|
1574 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
1575 |
+
|
1576 |
+
x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
|
1577 |
+
|
1578 |
+
if Padding:
|
1579 |
+
x = x[:, :, :H_, :W_] # reverse padding
|
1580 |
+
|
1581 |
+
return x
|
1582 |
+
|
1583 |
+
|
1584 |
+
class SwinTransformerBlock(nn.Module):
|
1585 |
+
def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
|
1586 |
+
super().__init__()
|
1587 |
+
self.conv = None
|
1588 |
+
if c1 != c2:
|
1589 |
+
self.conv = Conv(c1, c2)
|
1590 |
+
|
1591 |
+
# remove input_resolution
|
1592 |
+
self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
|
1593 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
|
1594 |
+
|
1595 |
+
def forward(self, x):
|
1596 |
+
if self.conv is not None:
|
1597 |
+
x = self.conv(x)
|
1598 |
+
x = self.blocks(x)
|
1599 |
+
return x
|
1600 |
+
|
1601 |
+
|
1602 |
+
class STCSPA(nn.Module):
|
1603 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
1604 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
1605 |
+
super(STCSPA, self).__init__()
|
1606 |
+
c_ = int(c2 * e) # hidden channels
|
1607 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
1608 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
1609 |
+
self.cv3 = Conv(2 * c_, c2, 1, 1)
|
1610 |
+
num_heads = c_ // 32
|
1611 |
+
self.m = SwinTransformerBlock(c_, c_, num_heads, n)
|
1612 |
+
#self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
1613 |
+
|
1614 |
+
def forward(self, x):
|
1615 |
+
y1 = self.m(self.cv1(x))
|
1616 |
+
y2 = self.cv2(x)
|
1617 |
+
return self.cv3(torch.cat((y1, y2), dim=1))
|
1618 |
+
|
1619 |
+
|
1620 |
+
class STCSPB(nn.Module):
|
1621 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
1622 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
1623 |
+
super(STCSPB, self).__init__()
|
1624 |
+
c_ = int(c2) # hidden channels
|
1625 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
1626 |
+
self.cv2 = Conv(c_, c_, 1, 1)
|
1627 |
+
self.cv3 = Conv(2 * c_, c2, 1, 1)
|
1628 |
+
num_heads = c_ // 32
|
1629 |
+
self.m = SwinTransformerBlock(c_, c_, num_heads, n)
|
1630 |
+
#self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
1631 |
+
|
1632 |
+
def forward(self, x):
|
1633 |
+
x1 = self.cv1(x)
|
1634 |
+
y1 = self.m(x1)
|
1635 |
+
y2 = self.cv2(x1)
|
1636 |
+
return self.cv3(torch.cat((y1, y2), dim=1))
|
1637 |
+
|
1638 |
+
|
1639 |
+
class STCSPC(nn.Module):
|
1640 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
1641 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
1642 |
+
super(STCSPC, self).__init__()
|
1643 |
+
c_ = int(c2 * e) # hidden channels
|
1644 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
1645 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
1646 |
+
self.cv3 = Conv(c_, c_, 1, 1)
|
1647 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
1648 |
+
num_heads = c_ // 32
|
1649 |
+
self.m = SwinTransformerBlock(c_, c_, num_heads, n)
|
1650 |
+
#self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
1651 |
+
|
1652 |
+
def forward(self, x):
|
1653 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
1654 |
+
y2 = self.cv2(x)
|
1655 |
+
return self.cv4(torch.cat((y1, y2), dim=1))
|
1656 |
+
|
1657 |
+
##### end of swin transformer #####
|
1658 |
+
|
1659 |
+
|
1660 |
+
##### swin transformer v2 #####
|
1661 |
+
|
1662 |
+
class WindowAttention_v2(nn.Module):
|
1663 |
+
|
1664 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
1665 |
+
pretrained_window_size=[0, 0]):
|
1666 |
+
|
1667 |
+
super().__init__()
|
1668 |
+
self.dim = dim
|
1669 |
+
self.window_size = window_size # Wh, Ww
|
1670 |
+
self.pretrained_window_size = pretrained_window_size
|
1671 |
+
self.num_heads = num_heads
|
1672 |
+
|
1673 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
1674 |
+
|
1675 |
+
# mlp to generate continuous relative position bias
|
1676 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
1677 |
+
nn.ReLU(inplace=True),
|
1678 |
+
nn.Linear(512, num_heads, bias=False))
|
1679 |
+
|
1680 |
+
# get relative_coords_table
|
1681 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
1682 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
1683 |
+
relative_coords_table = torch.stack(
|
1684 |
+
torch.meshgrid([relative_coords_h,
|
1685 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
1686 |
+
if pretrained_window_size[0] > 0:
|
1687 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
1688 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
1689 |
+
else:
|
1690 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
1691 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
1692 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
1693 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
1694 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
1695 |
+
|
1696 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
1697 |
+
|
1698 |
+
# get pair-wise relative position index for each token inside the window
|
1699 |
+
coords_h = torch.arange(self.window_size[0])
|
1700 |
+
coords_w = torch.arange(self.window_size[1])
|
1701 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
1702 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
1703 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
1704 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
1705 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
1706 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
1707 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
1708 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
1709 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
1710 |
+
|
1711 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
1712 |
+
if qkv_bias:
|
1713 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
1714 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
1715 |
+
else:
|
1716 |
+
self.q_bias = None
|
1717 |
+
self.v_bias = None
|
1718 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
1719 |
+
self.proj = nn.Linear(dim, dim)
|
1720 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
1721 |
+
self.softmax = nn.Softmax(dim=-1)
|
1722 |
+
|
1723 |
+
def forward(self, x, mask=None):
|
1724 |
+
|
1725 |
+
B_, N, C = x.shape
|
1726 |
+
qkv_bias = None
|
1727 |
+
if self.q_bias is not None:
|
1728 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
1729 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
1730 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
1731 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
1732 |
+
|
1733 |
+
# cosine attention
|
1734 |
+
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
1735 |
+
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
|
1736 |
+
attn = attn * logit_scale
|
1737 |
+
|
1738 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
1739 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
1740 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
1741 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
1742 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
1743 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
1744 |
+
|
1745 |
+
if mask is not None:
|
1746 |
+
nW = mask.shape[0]
|
1747 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
1748 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
1749 |
+
attn = self.softmax(attn)
|
1750 |
+
else:
|
1751 |
+
attn = self.softmax(attn)
|
1752 |
+
|
1753 |
+
attn = self.attn_drop(attn)
|
1754 |
+
|
1755 |
+
try:
|
1756 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
1757 |
+
except:
|
1758 |
+
x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
|
1759 |
+
|
1760 |
+
x = self.proj(x)
|
1761 |
+
x = self.proj_drop(x)
|
1762 |
+
return x
|
1763 |
+
|
1764 |
+
def extra_repr(self) -> str:
|
1765 |
+
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
1766 |
+
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
1767 |
+
|
1768 |
+
def flops(self, N):
|
1769 |
+
# calculate flops for 1 window with token length of N
|
1770 |
+
flops = 0
|
1771 |
+
# qkv = self.qkv(x)
|
1772 |
+
flops += N * self.dim * 3 * self.dim
|
1773 |
+
# attn = (q @ k.transpose(-2, -1))
|
1774 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
1775 |
+
# x = (attn @ v)
|
1776 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
1777 |
+
# x = self.proj(x)
|
1778 |
+
flops += N * self.dim * self.dim
|
1779 |
+
return flops
|
1780 |
+
|
1781 |
+
class Mlp_v2(nn.Module):
|
1782 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
|
1783 |
+
super().__init__()
|
1784 |
+
out_features = out_features or in_features
|
1785 |
+
hidden_features = hidden_features or in_features
|
1786 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
1787 |
+
self.act = act_layer()
|
1788 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
1789 |
+
self.drop = nn.Dropout(drop)
|
1790 |
+
|
1791 |
+
def forward(self, x):
|
1792 |
+
x = self.fc1(x)
|
1793 |
+
x = self.act(x)
|
1794 |
+
x = self.drop(x)
|
1795 |
+
x = self.fc2(x)
|
1796 |
+
x = self.drop(x)
|
1797 |
+
return x
|
1798 |
+
|
1799 |
+
|
1800 |
+
def window_partition_v2(x, window_size):
|
1801 |
+
|
1802 |
+
B, H, W, C = x.shape
|
1803 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
1804 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
1805 |
+
return windows
|
1806 |
+
|
1807 |
+
|
1808 |
+
def window_reverse_v2(windows, window_size, H, W):
|
1809 |
+
|
1810 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
1811 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
1812 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
1813 |
+
return x
|
1814 |
+
|
1815 |
+
|
1816 |
+
class SwinTransformerLayer_v2(nn.Module):
|
1817 |
+
|
1818 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
1819 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
|
1820 |
+
act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
|
1821 |
+
super().__init__()
|
1822 |
+
self.dim = dim
|
1823 |
+
#self.input_resolution = input_resolution
|
1824 |
+
self.num_heads = num_heads
|
1825 |
+
self.window_size = window_size
|
1826 |
+
self.shift_size = shift_size
|
1827 |
+
self.mlp_ratio = mlp_ratio
|
1828 |
+
#if min(self.input_resolution) <= self.window_size:
|
1829 |
+
# # if window size is larger than input resolution, we don't partition windows
|
1830 |
+
# self.shift_size = 0
|
1831 |
+
# self.window_size = min(self.input_resolution)
|
1832 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
1833 |
+
|
1834 |
+
self.norm1 = norm_layer(dim)
|
1835 |
+
self.attn = WindowAttention_v2(
|
1836 |
+
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
|
1837 |
+
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
1838 |
+
pretrained_window_size=(pretrained_window_size, pretrained_window_size))
|
1839 |
+
|
1840 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
1841 |
+
self.norm2 = norm_layer(dim)
|
1842 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
1843 |
+
self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
1844 |
+
|
1845 |
+
def create_mask(self, H, W):
|
1846 |
+
# calculate attention mask for SW-MSA
|
1847 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
1848 |
+
h_slices = (slice(0, -self.window_size),
|
1849 |
+
slice(-self.window_size, -self.shift_size),
|
1850 |
+
slice(-self.shift_size, None))
|
1851 |
+
w_slices = (slice(0, -self.window_size),
|
1852 |
+
slice(-self.window_size, -self.shift_size),
|
1853 |
+
slice(-self.shift_size, None))
|
1854 |
+
cnt = 0
|
1855 |
+
for h in h_slices:
|
1856 |
+
for w in w_slices:
|
1857 |
+
img_mask[:, h, w, :] = cnt
|
1858 |
+
cnt += 1
|
1859 |
+
|
1860 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
1861 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
1862 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
1863 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
1864 |
+
|
1865 |
+
return attn_mask
|
1866 |
+
|
1867 |
+
def forward(self, x):
|
1868 |
+
# reshape x[b c h w] to x[b l c]
|
1869 |
+
_, _, H_, W_ = x.shape
|
1870 |
+
|
1871 |
+
Padding = False
|
1872 |
+
if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
|
1873 |
+
Padding = True
|
1874 |
+
# print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
|
1875 |
+
pad_r = (self.window_size - W_ % self.window_size) % self.window_size
|
1876 |
+
pad_b = (self.window_size - H_ % self.window_size) % self.window_size
|
1877 |
+
x = F.pad(x, (0, pad_r, 0, pad_b))
|
1878 |
+
|
1879 |
+
# print('2', x.shape)
|
1880 |
+
B, C, H, W = x.shape
|
1881 |
+
L = H * W
|
1882 |
+
x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
|
1883 |
+
|
1884 |
+
# create mask from init to forward
|
1885 |
+
if self.shift_size > 0:
|
1886 |
+
attn_mask = self.create_mask(H, W).to(x.device)
|
1887 |
+
else:
|
1888 |
+
attn_mask = None
|
1889 |
+
|
1890 |
+
shortcut = x
|
1891 |
+
x = x.view(B, H, W, C)
|
1892 |
+
|
1893 |
+
# cyclic shift
|
1894 |
+
if self.shift_size > 0:
|
1895 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
1896 |
+
else:
|
1897 |
+
shifted_x = x
|
1898 |
+
|
1899 |
+
# partition windows
|
1900 |
+
x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
1901 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
1902 |
+
|
1903 |
+
# W-MSA/SW-MSA
|
1904 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
1905 |
+
|
1906 |
+
# merge windows
|
1907 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
1908 |
+
shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
|
1909 |
+
|
1910 |
+
# reverse cyclic shift
|
1911 |
+
if self.shift_size > 0:
|
1912 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
1913 |
+
else:
|
1914 |
+
x = shifted_x
|
1915 |
+
x = x.view(B, H * W, C)
|
1916 |
+
x = shortcut + self.drop_path(self.norm1(x))
|
1917 |
+
|
1918 |
+
# FFN
|
1919 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
1920 |
+
x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
|
1921 |
+
|
1922 |
+
if Padding:
|
1923 |
+
x = x[:, :, :H_, :W_] # reverse padding
|
1924 |
+
|
1925 |
+
return x
|
1926 |
+
|
1927 |
+
def extra_repr(self) -> str:
|
1928 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
1929 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
1930 |
+
|
1931 |
+
def flops(self):
|
1932 |
+
flops = 0
|
1933 |
+
H, W = self.input_resolution
|
1934 |
+
# norm1
|
1935 |
+
flops += self.dim * H * W
|
1936 |
+
# W-MSA/SW-MSA
|
1937 |
+
nW = H * W / self.window_size / self.window_size
|
1938 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
1939 |
+
# mlp
|
1940 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
1941 |
+
# norm2
|
1942 |
+
flops += self.dim * H * W
|
1943 |
+
return flops
|
1944 |
+
|
1945 |
+
|
1946 |
+
class SwinTransformer2Block(nn.Module):
|
1947 |
+
def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
|
1948 |
+
super().__init__()
|
1949 |
+
self.conv = None
|
1950 |
+
if c1 != c2:
|
1951 |
+
self.conv = Conv(c1, c2)
|
1952 |
+
|
1953 |
+
# remove input_resolution
|
1954 |
+
self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
|
1955 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
|
1956 |
+
|
1957 |
+
def forward(self, x):
|
1958 |
+
if self.conv is not None:
|
1959 |
+
x = self.conv(x)
|
1960 |
+
x = self.blocks(x)
|
1961 |
+
return x
|
1962 |
+
|
1963 |
+
|
1964 |
+
class ST2CSPA(nn.Module):
|
1965 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
1966 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
1967 |
+
super(ST2CSPA, self).__init__()
|
1968 |
+
c_ = int(c2 * e) # hidden channels
|
1969 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
1970 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
1971 |
+
self.cv3 = Conv(2 * c_, c2, 1, 1)
|
1972 |
+
num_heads = c_ // 32
|
1973 |
+
self.m = SwinTransformer2Block(c_, c_, num_heads, n)
|
1974 |
+
#self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
1975 |
+
|
1976 |
+
def forward(self, x):
|
1977 |
+
y1 = self.m(self.cv1(x))
|
1978 |
+
y2 = self.cv2(x)
|
1979 |
+
return self.cv3(torch.cat((y1, y2), dim=1))
|
1980 |
+
|
1981 |
+
|
1982 |
+
class ST2CSPB(nn.Module):
|
1983 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
1984 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
1985 |
+
super(ST2CSPB, self).__init__()
|
1986 |
+
c_ = int(c2) # hidden channels
|
1987 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
1988 |
+
self.cv2 = Conv(c_, c_, 1, 1)
|
1989 |
+
self.cv3 = Conv(2 * c_, c2, 1, 1)
|
1990 |
+
num_heads = c_ // 32
|
1991 |
+
self.m = SwinTransformer2Block(c_, c_, num_heads, n)
|
1992 |
+
#self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
1993 |
+
|
1994 |
+
def forward(self, x):
|
1995 |
+
x1 = self.cv1(x)
|
1996 |
+
y1 = self.m(x1)
|
1997 |
+
y2 = self.cv2(x1)
|
1998 |
+
return self.cv3(torch.cat((y1, y2), dim=1))
|
1999 |
+
|
2000 |
+
|
2001 |
+
class ST2CSPC(nn.Module):
|
2002 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
2003 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
2004 |
+
super(ST2CSPC, self).__init__()
|
2005 |
+
c_ = int(c2 * e) # hidden channels
|
2006 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
2007 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
2008 |
+
self.cv3 = Conv(c_, c_, 1, 1)
|
2009 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
2010 |
+
num_heads = c_ // 32
|
2011 |
+
self.m = SwinTransformer2Block(c_, c_, num_heads, n)
|
2012 |
+
#self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
2013 |
+
|
2014 |
+
def forward(self, x):
|
2015 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
2016 |
+
y2 = self.cv2(x)
|
2017 |
+
return self.cv4(torch.cat((y1, y2), dim=1))
|
2018 |
+
|
2019 |
+
##### end of swin transformer v2 #####
|