Spaces:
Runtime error
Runtime error
chore: use transformers version
Browse files- README.md +1 -1
- app.py +25 -15
- examples/0.jpg +0 -0
- examples/1.jpg +0 -0
- examples/2.jpg +0 -0
- examples/3.jpg +0 -0
- examples/4.jpg +0 -0
- examples/5.jpg +0 -0
- examples/6.jpg +0 -0
- examples/7.jpg +0 -0
- examples/8.jpg +0 -0
- manga_line_extraction/LICENSE +0 -21
- manga_line_extraction/model.py +0 -323
- requirements.txt +4 -1
- setup.py +0 -14
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 💭
|
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.21.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -3,13 +3,31 @@ from setup import setup
|
|
3 |
import torch
|
4 |
import gc
|
5 |
from PIL import Image
|
6 |
-
from
|
7 |
from anime2sketch.model import Anime2Sketch
|
|
|
8 |
|
9 |
setup()
|
10 |
|
11 |
print("Setup finished")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def flush():
|
15 |
gc.collect()
|
@@ -18,19 +36,13 @@ def flush():
|
|
18 |
|
19 |
@torch.no_grad()
|
20 |
def extract(image):
|
21 |
-
|
22 |
-
result = extractor.predict(image)
|
23 |
-
del extractor
|
24 |
-
flush()
|
25 |
return result
|
26 |
|
27 |
|
28 |
@torch.no_grad()
|
29 |
def convert_to_sketch(image):
|
30 |
-
|
31 |
-
result = to_sketch.predict(image)
|
32 |
-
del to_sketch
|
33 |
-
flush()
|
34 |
return result
|
35 |
|
36 |
|
@@ -51,6 +63,9 @@ def ui():
|
|
51 |
Original repos:
|
52 |
- [MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch)
|
53 |
- [Anime2Sketch](https://github.com/Mukosame/Anime2Sketch)
|
|
|
|
|
|
|
54 |
"""
|
55 |
)
|
56 |
|
@@ -71,14 +86,9 @@ def ui():
|
|
71 |
gr.Examples(
|
72 |
fn=start,
|
73 |
examples=[
|
|
|
74 |
["./examples/1.jpg"],
|
75 |
["./examples/2.jpg"],
|
76 |
-
["./examples/3.jpg"],
|
77 |
-
["./examples/4.jpg"],
|
78 |
-
["./examples/5.jpg"],
|
79 |
-
["./examples/6.jpg"],
|
80 |
-
["./examples/7.jpg"],
|
81 |
-
["./examples/8.jpg"],
|
82 |
],
|
83 |
inputs=[input_img],
|
84 |
outputs=[extract_output_img, to_sketch_output_img],
|
|
|
3 |
import torch
|
4 |
import gc
|
5 |
from PIL import Image
|
6 |
+
from transformers import AutoModel, AutoImageProcessor
|
7 |
from anime2sketch.model import Anime2Sketch
|
8 |
+
# import spaces
|
9 |
|
10 |
setup()
|
11 |
|
12 |
print("Setup finished")
|
13 |
|
14 |
+
MLE_MODEL_REPO = "p1atdev/MangaLineExtraction-hf"
|
15 |
+
|
16 |
+
class MangaLineExtractor:
|
17 |
+
model = AutoModel.from_pretrained(MLE_MODEL_REPO, trust_remote_code=True)
|
18 |
+
processor = AutoImageProcessor.from_pretrained(MLE_MODEL_REPO, trust_remote_code=True)
|
19 |
+
|
20 |
+
# @spaces.GPU
|
21 |
+
@torch.no_grad()
|
22 |
+
def __call__(self, image: Image.Image) -> Image.Image:
|
23 |
+
inputs = self.processor(image, return_tensors="pt")
|
24 |
+
outputs = self.model(inputs.pixel_values)
|
25 |
+
|
26 |
+
line_image = Image.fromarray(outputs.pixel_values[0].numpy().astype("uint8"), mode="L")
|
27 |
+
return line_image
|
28 |
+
|
29 |
+
mle_model = MangaLineExtractor()
|
30 |
+
a2s_model = Anime2Sketch("./models/netG.pth", "cpu")
|
31 |
|
32 |
def flush():
|
33 |
gc.collect()
|
|
|
36 |
|
37 |
@torch.no_grad()
|
38 |
def extract(image):
|
39 |
+
result = mle_model(image)
|
|
|
|
|
|
|
40 |
return result
|
41 |
|
42 |
|
43 |
@torch.no_grad()
|
44 |
def convert_to_sketch(image):
|
45 |
+
result = a2s_model.predict(image)
|
|
|
|
|
|
|
46 |
return result
|
47 |
|
48 |
|
|
|
63 |
Original repos:
|
64 |
- [MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch)
|
65 |
- [Anime2Sketch](https://github.com/Mukosame/Anime2Sketch)
|
66 |
+
|
67 |
+
Using with 🤗 transformers:
|
68 |
+
- [MangaLineExtraction-hf](https://huggingface.co/p1atdev/MangaLineExtraction-hf)
|
69 |
"""
|
70 |
)
|
71 |
|
|
|
86 |
gr.Examples(
|
87 |
fn=start,
|
88 |
examples=[
|
89 |
+
["./examples/0.jpg"],
|
90 |
["./examples/1.jpg"],
|
91 |
["./examples/2.jpg"],
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
],
|
93 |
inputs=[input_img],
|
94 |
outputs=[extract_output_img, to_sketch_output_img],
|
examples/0.jpg
ADDED
examples/1.jpg
CHANGED
examples/2.jpg
CHANGED
examples/3.jpg
DELETED
Binary file (77 kB)
|
|
examples/4.jpg
DELETED
Binary file (184 kB)
|
|
examples/5.jpg
DELETED
Binary file (113 kB)
|
|
examples/6.jpg
DELETED
Binary file (105 kB)
|
|
examples/7.jpg
DELETED
Binary file (100 kB)
|
|
examples/8.jpg
DELETED
Binary file (90.7 kB)
|
|
manga_line_extraction/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2021 Miaomiao Li
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
manga_line_extraction/model.py
DELETED
@@ -1,323 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.utils.data.dataset import Dataset
|
5 |
-
from PIL import Image
|
6 |
-
import fnmatch
|
7 |
-
import cv2
|
8 |
-
|
9 |
-
import sys
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
-
# torch.set_printoptions(precision=10)
|
14 |
-
|
15 |
-
|
16 |
-
class _bn_relu_conv(nn.Module):
|
17 |
-
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
|
18 |
-
super(_bn_relu_conv, self).__init__()
|
19 |
-
self.model = nn.Sequential(
|
20 |
-
nn.BatchNorm2d(in_filters, eps=1e-3),
|
21 |
-
nn.LeakyReLU(0.2),
|
22 |
-
nn.Conv2d(
|
23 |
-
in_filters,
|
24 |
-
nb_filters,
|
25 |
-
(fw, fh),
|
26 |
-
stride=subsample,
|
27 |
-
padding=(fw // 2, fh // 2),
|
28 |
-
padding_mode="zeros",
|
29 |
-
),
|
30 |
-
)
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
return self.model(x)
|
34 |
-
|
35 |
-
# the following are for debugs
|
36 |
-
print(
|
37 |
-
"****",
|
38 |
-
np.max(x.cpu().numpy()),
|
39 |
-
np.min(x.cpu().numpy()),
|
40 |
-
np.mean(x.cpu().numpy()),
|
41 |
-
np.std(x.cpu().numpy()),
|
42 |
-
x.shape,
|
43 |
-
)
|
44 |
-
for i, layer in enumerate(self.model):
|
45 |
-
if i != 2:
|
46 |
-
x = layer(x)
|
47 |
-
else:
|
48 |
-
x = layer(x)
|
49 |
-
# x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
|
50 |
-
print(
|
51 |
-
"____",
|
52 |
-
np.max(x.cpu().numpy()),
|
53 |
-
np.min(x.cpu().numpy()),
|
54 |
-
np.mean(x.cpu().numpy()),
|
55 |
-
np.std(x.cpu().numpy()),
|
56 |
-
x.shape,
|
57 |
-
)
|
58 |
-
print(x[0])
|
59 |
-
return x
|
60 |
-
|
61 |
-
|
62 |
-
class _u_bn_relu_conv(nn.Module):
|
63 |
-
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
|
64 |
-
super(_u_bn_relu_conv, self).__init__()
|
65 |
-
self.model = nn.Sequential(
|
66 |
-
nn.BatchNorm2d(in_filters, eps=1e-3),
|
67 |
-
nn.LeakyReLU(0.2),
|
68 |
-
nn.Conv2d(
|
69 |
-
in_filters,
|
70 |
-
nb_filters,
|
71 |
-
(fw, fh),
|
72 |
-
stride=subsample,
|
73 |
-
padding=(fw // 2, fh // 2),
|
74 |
-
),
|
75 |
-
nn.Upsample(scale_factor=2, mode="nearest"),
|
76 |
-
)
|
77 |
-
|
78 |
-
def forward(self, x):
|
79 |
-
return self.model(x)
|
80 |
-
|
81 |
-
|
82 |
-
class _shortcut(nn.Module):
|
83 |
-
def __init__(self, in_filters, nb_filters, subsample=1):
|
84 |
-
super(_shortcut, self).__init__()
|
85 |
-
self.process = False
|
86 |
-
self.model = None
|
87 |
-
if in_filters != nb_filters or subsample != 1:
|
88 |
-
self.process = True
|
89 |
-
self.model = nn.Sequential(
|
90 |
-
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
|
91 |
-
)
|
92 |
-
|
93 |
-
def forward(self, x, y):
|
94 |
-
# print(x.size(), y.size(), self.process)
|
95 |
-
if self.process:
|
96 |
-
y0 = self.model(x)
|
97 |
-
# print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
|
98 |
-
return y0 + y
|
99 |
-
else:
|
100 |
-
# print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
|
101 |
-
return x + y
|
102 |
-
|
103 |
-
|
104 |
-
class _u_shortcut(nn.Module):
|
105 |
-
def __init__(self, in_filters, nb_filters, subsample):
|
106 |
-
super(_u_shortcut, self).__init__()
|
107 |
-
self.process = False
|
108 |
-
self.model = None
|
109 |
-
if in_filters != nb_filters:
|
110 |
-
self.process = True
|
111 |
-
self.model = nn.Sequential(
|
112 |
-
nn.Conv2d(
|
113 |
-
in_filters,
|
114 |
-
nb_filters,
|
115 |
-
(1, 1),
|
116 |
-
stride=subsample,
|
117 |
-
padding_mode="zeros",
|
118 |
-
),
|
119 |
-
nn.Upsample(scale_factor=2, mode="nearest"),
|
120 |
-
)
|
121 |
-
|
122 |
-
def forward(self, x, y):
|
123 |
-
if self.process:
|
124 |
-
return self.model(x) + y
|
125 |
-
else:
|
126 |
-
return x + y
|
127 |
-
|
128 |
-
|
129 |
-
class basic_block(nn.Module):
|
130 |
-
def __init__(self, in_filters, nb_filters, init_subsample=1):
|
131 |
-
super(basic_block, self).__init__()
|
132 |
-
self.conv1 = _bn_relu_conv(
|
133 |
-
in_filters, nb_filters, 3, 3, subsample=init_subsample
|
134 |
-
)
|
135 |
-
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
|
136 |
-
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
|
137 |
-
|
138 |
-
def forward(self, x):
|
139 |
-
x1 = self.conv1(x)
|
140 |
-
x2 = self.residual(x1)
|
141 |
-
return self.shortcut(x, x2)
|
142 |
-
|
143 |
-
|
144 |
-
class _u_basic_block(nn.Module):
|
145 |
-
def __init__(self, in_filters, nb_filters, init_subsample=1):
|
146 |
-
super(_u_basic_block, self).__init__()
|
147 |
-
self.conv1 = _u_bn_relu_conv(
|
148 |
-
in_filters, nb_filters, 3, 3, subsample=init_subsample
|
149 |
-
)
|
150 |
-
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
|
151 |
-
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
|
152 |
-
|
153 |
-
def forward(self, x):
|
154 |
-
y = self.residual(self.conv1(x))
|
155 |
-
return self.shortcut(x, y)
|
156 |
-
|
157 |
-
|
158 |
-
class _residual_block(nn.Module):
|
159 |
-
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
|
160 |
-
super(_residual_block, self).__init__()
|
161 |
-
layers = []
|
162 |
-
for i in range(repetitions):
|
163 |
-
init_subsample = 1
|
164 |
-
if i == repetitions - 1 and not is_first_layer:
|
165 |
-
init_subsample = 2
|
166 |
-
if i == 0:
|
167 |
-
l = basic_block(
|
168 |
-
in_filters=in_filters,
|
169 |
-
nb_filters=nb_filters,
|
170 |
-
init_subsample=init_subsample,
|
171 |
-
)
|
172 |
-
else:
|
173 |
-
l = basic_block(
|
174 |
-
in_filters=nb_filters,
|
175 |
-
nb_filters=nb_filters,
|
176 |
-
init_subsample=init_subsample,
|
177 |
-
)
|
178 |
-
layers.append(l)
|
179 |
-
|
180 |
-
self.model = nn.Sequential(*layers)
|
181 |
-
|
182 |
-
def forward(self, x):
|
183 |
-
return self.model(x)
|
184 |
-
|
185 |
-
|
186 |
-
class _upsampling_residual_block(nn.Module):
|
187 |
-
def __init__(self, in_filters, nb_filters, repetitions):
|
188 |
-
super(_upsampling_residual_block, self).__init__()
|
189 |
-
layers = []
|
190 |
-
for i in range(repetitions):
|
191 |
-
l = None
|
192 |
-
if i == 0:
|
193 |
-
l = _u_basic_block(
|
194 |
-
in_filters=in_filters, nb_filters=nb_filters
|
195 |
-
) # (input)
|
196 |
-
else:
|
197 |
-
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters) # (input)
|
198 |
-
layers.append(l)
|
199 |
-
|
200 |
-
self.model = nn.Sequential(*layers)
|
201 |
-
|
202 |
-
def forward(self, x):
|
203 |
-
return self.model(x)
|
204 |
-
|
205 |
-
|
206 |
-
class res_skip(nn.Module):
|
207 |
-
def __init__(self):
|
208 |
-
super(res_skip, self).__init__()
|
209 |
-
self.block0 = _residual_block(
|
210 |
-
in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True
|
211 |
-
) # (input)
|
212 |
-
self.block1 = _residual_block(
|
213 |
-
in_filters=24, nb_filters=48, repetitions=3
|
214 |
-
) # (block0)
|
215 |
-
self.block2 = _residual_block(
|
216 |
-
in_filters=48, nb_filters=96, repetitions=5
|
217 |
-
) # (block1)
|
218 |
-
self.block3 = _residual_block(
|
219 |
-
in_filters=96, nb_filters=192, repetitions=7
|
220 |
-
) # (block2)
|
221 |
-
self.block4 = _residual_block(
|
222 |
-
in_filters=192, nb_filters=384, repetitions=12
|
223 |
-
) # (block3)
|
224 |
-
|
225 |
-
self.block5 = _upsampling_residual_block(
|
226 |
-
in_filters=384, nb_filters=192, repetitions=7
|
227 |
-
) # (block4)
|
228 |
-
self.res1 = _shortcut(
|
229 |
-
in_filters=192, nb_filters=192
|
230 |
-
) # (block3, block5, subsample=(1,1))
|
231 |
-
|
232 |
-
self.block6 = _upsampling_residual_block(
|
233 |
-
in_filters=192, nb_filters=96, repetitions=5
|
234 |
-
) # (res1)
|
235 |
-
self.res2 = _shortcut(
|
236 |
-
in_filters=96, nb_filters=96
|
237 |
-
) # (block2, block6, subsample=(1,1))
|
238 |
-
|
239 |
-
self.block7 = _upsampling_residual_block(
|
240 |
-
in_filters=96, nb_filters=48, repetitions=3
|
241 |
-
) # (res2)
|
242 |
-
self.res3 = _shortcut(
|
243 |
-
in_filters=48, nb_filters=48
|
244 |
-
) # (block1, block7, subsample=(1,1))
|
245 |
-
|
246 |
-
self.block8 = _upsampling_residual_block(
|
247 |
-
in_filters=48, nb_filters=24, repetitions=2
|
248 |
-
) # (res3)
|
249 |
-
self.res4 = _shortcut(
|
250 |
-
in_filters=24, nb_filters=24
|
251 |
-
) # (block0,block8, subsample=(1,1))
|
252 |
-
|
253 |
-
self.block9 = _residual_block(
|
254 |
-
in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True
|
255 |
-
) # (res4)
|
256 |
-
self.conv15 = _bn_relu_conv(
|
257 |
-
in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1
|
258 |
-
) # (block7)
|
259 |
-
|
260 |
-
def forward(self, x):
|
261 |
-
x0 = self.block0(x)
|
262 |
-
x1 = self.block1(x0)
|
263 |
-
x2 = self.block2(x1)
|
264 |
-
x3 = self.block3(x2)
|
265 |
-
x4 = self.block4(x3)
|
266 |
-
|
267 |
-
x5 = self.block5(x4)
|
268 |
-
res1 = self.res1(x3, x5)
|
269 |
-
|
270 |
-
x6 = self.block6(res1)
|
271 |
-
res2 = self.res2(x2, x6)
|
272 |
-
|
273 |
-
x7 = self.block7(res2)
|
274 |
-
res3 = self.res3(x1, x7)
|
275 |
-
|
276 |
-
x8 = self.block8(res3)
|
277 |
-
res4 = self.res4(x0, x8)
|
278 |
-
|
279 |
-
x9 = self.block9(res4)
|
280 |
-
y = self.conv15(x9)
|
281 |
-
|
282 |
-
return y
|
283 |
-
|
284 |
-
|
285 |
-
class MangaLineExtractor:
|
286 |
-
def __init__(self, model_path: str = "erika.pth", device: str = "cpu"):
|
287 |
-
self.model = res_skip()
|
288 |
-
self.model.load_state_dict(torch.load(model_path))
|
289 |
-
|
290 |
-
self.is_cuda = torch.cuda.is_available() and device == "cuda"
|
291 |
-
if self.is_cuda:
|
292 |
-
self.model.cuda()
|
293 |
-
else:
|
294 |
-
self.model.cpu()
|
295 |
-
|
296 |
-
self.model.eval()
|
297 |
-
|
298 |
-
def predict(self, image):
|
299 |
-
src = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
300 |
-
|
301 |
-
rows = int(np.ceil(src.shape[0] / 16)) * 16
|
302 |
-
cols = int(np.ceil(src.shape[1] / 16)) * 16
|
303 |
-
|
304 |
-
# manually construct a batch. You can change it based on your usecases.
|
305 |
-
patch = np.ones((1, 1, rows, cols), dtype=np.float32)
|
306 |
-
patch[0, 0, 0 : src.shape[0], 0 : src.shape[1]] = src
|
307 |
-
|
308 |
-
if self.is_cuda:
|
309 |
-
tensor = torch.from_numpy(patch).cuda()
|
310 |
-
else:
|
311 |
-
tensor = torch.from_numpy(patch).cpu()
|
312 |
-
|
313 |
-
y = self.model(tensor)
|
314 |
-
|
315 |
-
yc = y.detach().numpy()[0, 0, :, :]
|
316 |
-
yc[yc > 255] = 255
|
317 |
-
yc[yc < 0] = 0
|
318 |
-
yc = yc / 255.0
|
319 |
-
|
320 |
-
output = yc[0 : src.shape[0], 0 : src.shape[1]]
|
321 |
-
output = cv2.cvtColor(output, cv2.COLOR_GRAY2BGR)
|
322 |
-
|
323 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -2,4 +2,7 @@ torch
|
|
2 |
torchvision
|
3 |
numpy
|
4 |
opencv-python
|
5 |
-
huggingface_hub
|
|
|
|
|
|
|
|
2 |
torchvision
|
3 |
numpy
|
4 |
opencv-python
|
5 |
+
huggingface_hub
|
6 |
+
spaces
|
7 |
+
safetensors
|
8 |
+
transformers
|
setup.py
CHANGED
@@ -5,21 +5,8 @@ from utils import custom_drive_cache_dir, get_drive
|
|
5 |
|
6 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
7 |
|
8 |
-
MANGA_LINE_EXTRACTION_MODEL = "https://github.com/ljsabc/MangaLineExtraction_PyTorch/releases/download/v1/erika.pth"
|
9 |
ANIME2SKETCH_MODEL = {"REPO_ID": "p1atdev/Anime2Sketch", "FILENAME": "netG.pth"}
|
10 |
|
11 |
-
|
12 |
-
def download_manga_line_extraction_model():
|
13 |
-
if os.path.exists("./models/erika.pth"):
|
14 |
-
return
|
15 |
-
|
16 |
-
with requests.get(MANGA_LINE_EXTRACTION_MODEL, stream=True) as r:
|
17 |
-
r.raise_for_status()
|
18 |
-
with open("./models/erika.pth", "wb") as f:
|
19 |
-
for chunk in r.iter_content(chunk_size=8192):
|
20 |
-
f.write(chunk)
|
21 |
-
|
22 |
-
|
23 |
def download_anime2sketch_model():
|
24 |
if os.path.exists("./models/netG.pth"):
|
25 |
return
|
@@ -39,5 +26,4 @@ def download_anime2sketch_model():
|
|
39 |
def setup():
|
40 |
if not os.path.exists("./models"):
|
41 |
os.makedirs("./models")
|
42 |
-
download_manga_line_extraction_model()
|
43 |
download_anime2sketch_model()
|
|
|
5 |
|
6 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
7 |
|
|
|
8 |
ANIME2SKETCH_MODEL = {"REPO_ID": "p1atdev/Anime2Sketch", "FILENAME": "netG.pth"}
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def download_anime2sketch_model():
|
11 |
if os.path.exists("./models/netG.pth"):
|
12 |
return
|
|
|
26 |
def setup():
|
27 |
if not os.path.exists("./models"):
|
28 |
os.makedirs("./models")
|
|
|
29 |
download_anime2sketch_model()
|