Spaces:
Sleeping
Sleeping
File size: 6,414 Bytes
672530f c8ff31c 672530f c6d26b8 672530f c6d26b8 ddafa36 c6d26b8 7386b04 c6d26b8 89fac38 672530f cadc650 672530f cadc650 c6d26b8 ddafa36 c6d26b8 672530f c6d26b8 672530f c6d26b8 672530f c6d26b8 cc07369 c6d26b8 e59da9c c6d26b8 f60b69e c6d26b8 fb111d4 c6d26b8 c3243aa c6d26b8 e59da9c c6d26b8 05825a6 c6d26b8 05825a6 c6d26b8 e59da9c c6d26b8 fb111d4 c6d26b8 810928a c6d26b8 e59da9c c6d26b8 e59da9c c6d26b8 cadc650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# OCR Translate v0.2
# 创建人:曾逸夫
# 创建时间:2022-07-19
import os
#os.system("apt-get install xclip")
import gradio as gr
import nltk
import pyclip
import pytesseract
from nltk.tokenize import sent_tokenize
#from transformers import MarianMTModel, MarianTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration
nltk.download punkt
OCR_TR_DESCRIPTION = '''# OCR Translate v0.2
<div id="content_align">OCR translation system based on Tesseract</div>'''
# 图片路径
img_dir = "./data"
# 获取tesseract语言列表
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
# 翻译模型选择
def model_choice(src, trg):
# https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-pt-en
# https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-pt
# https://huggingface.co/unicamp-dl/translation-pt-en-t5
# https://huggingface.co/unicamp-dl/translation-en-pt-t5
model_name = f"unicamp-dl/translation-{src}-{trg}-t5" # 模型名称
#tokenizer = MarianTokenizer.from_pretrained(model_name) # 分词器
#model = MarianMTModel.from_pretrained(model_name) # 模型
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
return tokenizer, model
# tesseract语言列表转pytesseract语言
def ocr_lang(lang_list):
lang_str = ""
lang_len = len(lang_list)
if lang_len == 1:
return lang_list[0]
else:
for i in range(lang_len):
lang_list.insert(lang_len - i, "+")
lang_str = "".join(lang_list[:-1])
return lang_str
# ocr tesseract
def ocr_tesseract(img, languages):
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
return ocr_str
# 清除
def clear_content():
return None
# 复制到剪贴板
def cp_text(input_text):
# sudo apt-get install xclip
try:
pyclip.copy(input_text)
except Exception as e:
print("sudo apt-get install xclip")
print(e)
# 清除剪贴板
def cp_clear():
pyclip.clear()
# 翻译
def translate(input_text, inputs_transStyle):
# 参考:https://huggingface.co/docs/transformers/model_doc/marian
if input_text is None or input_text == "":
return "System prompt: There is no content to translate!"
# 选择翻译模型
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1]
tokenizer, model = model_choice(trans_src, trans_trg)
translate_text = ""
input_text_list = input_text.split("\n\n")
translate_text_list_tmp = []
for i in range(len(input_text_list)):
if input_text_list[i] != "":
translate_text_list_tmp.append(input_text_list[i])
for i in range(len(translate_text_list_tmp)):
translated_sub = model.generate(
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True))
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub]
translate_text_sub = "".join(tgt_text_sub)
translate_text = translate_text + "\n\n" + translate_text_sub
return translate_text[2:]
def main():
with gr.Blocks(css='style.css') as ocr_tr:
gr.Markdown(OCR_TR_DESCRIPTION)
# -------------- OCR 文字提取 --------------
with gr.Blocks():
with gr.Row():
gr.Markdown("### Step 01: Text Extraction")
with gr.Row():
with gr.Column():
with gr.Row():
inputs_img = gr.Image(image_mode="RGB", sources="upload", type="pil", label="image")
with gr.Row():
inputs_lang = gr.CheckboxGroup(choices=["por", "eng"],
type="value",
value=['eng'],
label='language')
with gr.Row():
clear_img_btn = gr.Button('Clear')
ocr_btn = gr.Button(value='OCR Extraction', variant="primary")
with gr.Column():
with gr.Row():
outputs_text = gr.Textbox(label="Extract content", lines=20)
with gr.Row():
inputs_transStyle = gr.Radio(choices=["pt-en", "en-pt"],
type="value",
value="pt-en",
label='translation mode')
with gr.Row():
clear_text_btn = gr.Button('Clear')
translate_btn = gr.Button(value='Translate', variant="primary")
with gr.Row():
example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]],
["./data/test03.png", ["por"]]]
gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False)
# -------------- 翻译 --------------
with gr.Blocks():
with gr.Row():
gr.Markdown("### Step 02: Translation")
with gr.Row():
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20)
with gr.Row():
cp_clear_btn = gr.Button(value='Clear Clipboard')
cp_btn = gr.Button(value='Copy to clipboard', variant="primary")
# ---------------------- OCR Tesseract ----------------------
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
outputs_text,])
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])
# ---------------------- 翻译 ----------------------
translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text])
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])
# ---------------------- 复制到剪贴板 ----------------------
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])
ocr_tr.launch(inbrowser=True)
if __name__ == '__main__':
main() |