File size: 6,414 Bytes
672530f
 
 
 
c8ff31c
672530f
 
 
c6d26b8
 
672530f
c6d26b8
 
ddafa36
 
c6d26b8
7386b04
c6d26b8
 
 
 
 
 
 
 
 
 
89fac38
672530f
cadc650
672530f
 
cadc650
 
 
c6d26b8
ddafa36
 
 
 
 
c6d26b8
672530f
c6d26b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672530f
 
 
 
 
 
 
 
 
 
 
 
c6d26b8
672530f
 
 
 
 
 
 
 
 
 
 
 
 
c6d26b8
 
 
 
 
 
 
 
cc07369
c6d26b8
 
e59da9c
c6d26b8
 
 
 
f60b69e
c6d26b8
fb111d4
c6d26b8
c3243aa
c6d26b8
 
 
 
e59da9c
c6d26b8
 
 
 
 
05825a6
c6d26b8
05825a6
c6d26b8
 
 
e59da9c
c6d26b8
 
 
fb111d4
c6d26b8
 
 
810928a
c6d26b8
 
 
 
 
e59da9c
c6d26b8
 
e59da9c
 
c6d26b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cadc650
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# OCR Translate v0.2
# 创建人:曾逸夫
# 创建时间:2022-07-19

import os

#os.system("apt-get install xclip")

import gradio as gr
import nltk
import pyclip
import pytesseract
from nltk.tokenize import sent_tokenize
#from transformers import MarianMTModel, MarianTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration

nltk.download punkt

OCR_TR_DESCRIPTION = '''# OCR Translate v0.2
<div id="content_align">OCR translation system based on Tesseract</div>'''

# 图片路径
img_dir = "./data"

# 获取tesseract语言列表
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]


# 翻译模型选择
def model_choice(src, trg):
    # https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-pt-en
    # https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-pt
    # https://huggingface.co/unicamp-dl/translation-pt-en-t5
    # https://huggingface.co/unicamp-dl/translation-en-pt-t5
    model_name = f"unicamp-dl/translation-{src}-{trg}-t5"  # 模型名称

    #tokenizer = MarianTokenizer.from_pretrained(model_name)  # 分词器
    #model = MarianMTModel.from_pretrained(model_name)  # 模型

    tokenizer = T5Tokenizer.from_pretrained(model_name)
    model = T5ForConditionalGeneration.from_pretrained(model_name)

    return tokenizer, model


# tesseract语言列表转pytesseract语言
def ocr_lang(lang_list):
    lang_str = ""
    lang_len = len(lang_list)
    if lang_len == 1:
        return lang_list[0]
    else:
        for i in range(lang_len):
            lang_list.insert(lang_len - i, "+")

        lang_str = "".join(lang_list[:-1])
        return lang_str


# ocr tesseract
def ocr_tesseract(img, languages):
    ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
    return ocr_str


# 清除
def clear_content():
    return None


# 复制到剪贴板
def cp_text(input_text):
    # sudo apt-get install xclip
    try:
        pyclip.copy(input_text)
    except Exception as e:
        print("sudo apt-get install xclip")
        print(e)


# 清除剪贴板
def cp_clear():
    pyclip.clear()


# 翻译
def translate(input_text, inputs_transStyle):
    # 参考:https://huggingface.co/docs/transformers/model_doc/marian
    if input_text is None or input_text == "":
        return "System prompt: There is no content to translate!"

    # 选择翻译模型
    trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1]
    tokenizer, model = model_choice(trans_src, trans_trg)

    translate_text = ""
    input_text_list = input_text.split("\n\n")

    translate_text_list_tmp = []
    for i in range(len(input_text_list)):
        if input_text_list[i] != "":
            translate_text_list_tmp.append(input_text_list[i])

    for i in range(len(translate_text_list_tmp)):
        translated_sub = model.generate(
            **tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True))
        tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub]
        translate_text_sub = "".join(tgt_text_sub)
        translate_text = translate_text + "\n\n" + translate_text_sub

    return translate_text[2:]


def main():

    with gr.Blocks(css='style.css') as ocr_tr:
        gr.Markdown(OCR_TR_DESCRIPTION)

        # -------------- OCR 文字提取 --------------
        with gr.Blocks():

            with gr.Row():
                gr.Markdown("### Step 01: Text Extraction")

            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        inputs_img = gr.Image(image_mode="RGB", sources="upload", type="pil", label="image")
                    with gr.Row():
                        inputs_lang = gr.CheckboxGroup(choices=["por", "eng"],
                                                       type="value",
                                                       value=['eng'],
                                                       label='language')

                    with gr.Row():
                        clear_img_btn = gr.Button('Clear')
                        ocr_btn = gr.Button(value='OCR Extraction', variant="primary")

                with gr.Column():
                    with gr.Row():
                        outputs_text = gr.Textbox(label="Extract content", lines=20)
                    with gr.Row():
                        inputs_transStyle = gr.Radio(choices=["pt-en", "en-pt"],
                                                     type="value",
                                                     value="pt-en",
                                                     label='translation mode')
                    with gr.Row():
                        clear_text_btn = gr.Button('Clear')
                        translate_btn = gr.Button(value='Translate', variant="primary")

            with gr.Row():
                example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]],
                                ["./data/test03.png", ["por"]]]
                gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False)

        # -------------- 翻译 --------------
        with gr.Blocks():

            with gr.Row():
                gr.Markdown("### Step 02: Translation")

            with gr.Row():
                outputs_tr_text = gr.Textbox(label="Translate Content", lines=20)

            with gr.Row():
                cp_clear_btn = gr.Button(value='Clear Clipboard')
                cp_btn = gr.Button(value='Copy to clipboard', variant="primary")

        # ---------------------- OCR Tesseract ----------------------
        ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
            outputs_text,])
        clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])

        # ---------------------- 翻译 ----------------------
        translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text])
        clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])

        # ---------------------- 复制到剪贴板 ----------------------
        cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
        cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])

    ocr_tr.launch(inbrowser=True)


if __name__ == '__main__':
    main()