# OCR Translate v0.2 # 创建人:曾逸夫 (Founder: Zeng Yifu) # Creation time:2022-07-19 import os #os.system("apt-get install xclip") import gradio as gr import nltk import pyclip import pytesseract import nltk from nltk.tokenize import sent_tokenize from transformers import MarianMTModel, MarianTokenizer from transformers import T5Tokenizer, T5ForConditionalGeneration nltk.download('punkt') nltk.download('punkt_tab') OCR_TR_DESCRIPTION = '''# OCR Translate v0.2
OCR translation system based on Tesseract
''' # Image Path img_dir = "./data" # Get tesseract language list choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] # Translation model selection def model_choice(src, trg): # https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-pt-en # https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-pt # https://huggingface.co/unicamp-dl/translation-pt-en-t5 # https://huggingface.co/unicamp-dl/translation-en-pt-t5 model_name = f"unicamp-dl/translation-{src}-{trg}-t5" # Model Name #tokenizer = MarianTokenizer.from_pretrained(model_name) # Tokenizer #model = MarianMTModel.from_pretrained(model_name) # Model tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) return tokenizer, model # Convert tesseract language list to pytesseract language def ocr_lang(lang_list): lang_str = "" lang_len = len(lang_list) if lang_len == 1: return lang_list[0] else: for i in range(lang_len): lang_list.insert(lang_len - i, "+") lang_str = "".join(lang_list[:-1]) return lang_str # ocr tesseract def ocr_tesseract(img, languages): ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) return ocr_str # Clear def clear_content(): return None # Copy to Clipboard def cp_text(input_text): # sudo apt-get install xclip try: pyclip.copy(input_text) except Exception as e: print("sudo apt-get install xclip") print(e) # Clear Clipboard def cp_clear(): pyclip.clear() # Translate def translate(input_text, inputs_transStyle): # Reference:https://huggingface.co/docs/transformers/model_doc/marian if input_text is None or input_text == "": return "System prompt: There is no content to translate!" # Selecting a translation model trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1] tokenizer, model = model_choice(trans_src, trans_trg) translate_text = "" input_text_list = input_text.split("\n\n") translate_text_list_tmp = [] for i in range(len(input_text_list)): if input_text_list[i] != "": translate_text_list_tmp.append(input_text_list[i]) for i in range(len(translate_text_list_tmp)): translated_sub = model.generate( **tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True)) tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] translate_text_sub = "".join(tgt_text_sub) translate_text = translate_text + "\n\n" + translate_text_sub return translate_text[2:] def main(): with gr.Blocks(css='style.css') as ocr_tr: gr.Markdown(OCR_TR_DESCRIPTION) # -------------- OCR Text Extraction -------------- with gr.Blocks(): with gr.Row(): gr.Markdown("### Step 01: Text Extraction") with gr.Row(): with gr.Column(): with gr.Row(): inputs_img = gr.Image(image_mode="RGB", sources="upload", type="pil", label="image") with gr.Row(): inputs_lang = gr.CheckboxGroup(choices=["por", "eng"], type="value", value=['eng'], label='language') with gr.Row(): clear_img_btn = gr.Button('Clear') ocr_btn = gr.Button(value='OCR Extraction', variant="primary") with gr.Column(): with gr.Row(): outputs_text = gr.Textbox(label="Extract content", lines=20) with gr.Row(): inputs_transStyle = gr.Radio(choices=["pt-en", "en-pt"], type="value", value="pt-en", label='translation mode') with gr.Row(): clear_text_btn = gr.Button('Clear') translate_btn = gr.Button(value='Translate', variant="primary") with gr.Row(): example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], ["./data/test03.png", ["por"]]] gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False) # -------------- Translate -------------- with gr.Blocks(): with gr.Row(): gr.Markdown("### Step 02: Translation") with gr.Row(): outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) with gr.Row(): cp_clear_btn = gr.Button(value='Clear Clipboard') cp_btn = gr.Button(value='Copy to clipboard', variant="primary") # ---------------------- OCR Tesseract ---------------------- ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ outputs_text,]) clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) # ---------------------- Translate ---------------------- translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text]) clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) # ---------------------- Copy to Clipboard ---------------------- cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) ocr_tr.launch(inbrowser=True) if __name__ == '__main__': main()