|
import argparse |
|
import json |
|
import os |
|
import shutil |
|
from collections import defaultdict |
|
from inspect import signature |
|
from tempfile import TemporaryDirectory |
|
from typing import Dict, List, Optional, Set |
|
|
|
import torch |
|
|
|
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download |
|
from huggingface_hub.file_download import repo_folder_name |
|
from safetensors.torch import load_file, save_file |
|
from transformers import AutoConfig |
|
from transformers.pipelines.base import infer_framework_load_model |
|
|
|
|
|
COMMIT_DESCRIPTION = """ |
|
This is an automated PR created with https://huggingface.co/spaces/safetensors/convert |
|
|
|
This new file is equivalent to `pytorch_model.bin` but safe in the sense that |
|
no arbitrary code can be put into it. |
|
|
|
These files also happen to load much faster than their pytorch counterpart: |
|
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb |
|
|
|
The widgets on your model page will run using this model even if this is not merged |
|
making sure the file actually works. |
|
|
|
If you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions |
|
|
|
Feel free to ignore this PR. |
|
""" |
|
|
|
|
|
class AlreadyExists(Exception): |
|
pass |
|
|
|
|
|
def shared_pointers(tensors): |
|
ptrs = defaultdict(list) |
|
for k, v in tensors.items(): |
|
ptrs[v.data_ptr()].append(k) |
|
failing = [] |
|
for ptr, names in ptrs.items(): |
|
if len(names) > 1: |
|
failing.append(names) |
|
return failing |
|
|
|
|
|
def check_file_size(sf_filename: str, pt_filename: str): |
|
sf_size = os.stat(sf_filename).st_size |
|
pt_size = os.stat(pt_filename).st_size |
|
|
|
if (sf_size - pt_size) / pt_size > 0.01: |
|
raise RuntimeError( |
|
f"""The file size different is more than 1%: |
|
- {sf_filename}: {sf_size} |
|
- {pt_filename}: {pt_size} |
|
""" |
|
) |
|
|
|
|
|
def rename(pt_filename: str) -> str: |
|
filename, ext = os.path.splitext(pt_filename) |
|
local = f"{filename}.safetensors" |
|
local = local.replace("pytorch_model", "model") |
|
return local |
|
|
|
|
|
def convert_multi(model_id: str, folder: str) -> List["CommitOperationAdd"]: |
|
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json") |
|
with open(filename, "r") as f: |
|
data = json.load(f) |
|
|
|
filenames = set(data["weight_map"].values()) |
|
local_filenames = [] |
|
for filename in filenames: |
|
pt_filename = hf_hub_download(repo_id=model_id, filename=filename) |
|
|
|
sf_filename = rename(pt_filename) |
|
sf_filename = os.path.join(folder, sf_filename) |
|
convert_file(pt_filename, sf_filename) |
|
local_filenames.append(sf_filename) |
|
|
|
index = os.path.join(folder, "model.safetensors.index.json") |
|
with open(index, "w") as f: |
|
newdata = {k: v for k, v in data.items()} |
|
newmap = {k: rename(v) for k, v in data["weight_map"].items()} |
|
newdata["weight_map"] = newmap |
|
json.dump(newdata, f, indent=4) |
|
local_filenames.append(index) |
|
|
|
operations = [ |
|
CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames |
|
] |
|
|
|
return operations |
|
|
|
|
|
def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]: |
|
pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin") |
|
|
|
sf_name = "model.safetensors" |
|
sf_filename = os.path.join(folder, sf_name) |
|
convert_file(pt_filename, sf_filename) |
|
operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)] |
|
return operations |
|
|
|
|
|
def convert_file( |
|
pt_filename: str, |
|
sf_filename: str, |
|
): |
|
loaded = torch.load(pt_filename, map_location="cpu") |
|
if "state_dict" in loaded: |
|
loaded = loaded["state_dict"] |
|
shared = shared_pointers(loaded) |
|
for shared_weights in shared: |
|
for name in shared_weights[1:]: |
|
loaded.pop(name) |
|
|
|
|
|
loaded = {k: v.contiguous() for k, v in loaded.items()} |
|
|
|
dirname = os.path.dirname(sf_filename) |
|
os.makedirs(dirname, exist_ok=True) |
|
save_file(loaded, sf_filename, metadata={"format": "pt"}) |
|
check_file_size(sf_filename, pt_filename) |
|
reloaded = load_file(sf_filename) |
|
for k in loaded: |
|
pt_tensor = loaded[k] |
|
sf_tensor = reloaded[k] |
|
if not torch.equal(pt_tensor, sf_tensor): |
|
raise RuntimeError(f"The output tensors do not match for key {k}") |
|
|
|
|
|
def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str: |
|
errors = [] |
|
for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]: |
|
pt_set = set(pt_infos[key]) |
|
sf_set = set(sf_infos[key]) |
|
|
|
pt_only = pt_set - sf_set |
|
sf_only = sf_set - pt_set |
|
|
|
if pt_only: |
|
errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings") |
|
if sf_only: |
|
errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings") |
|
return "\n".join(errors) |
|
|
|
|
|
def check_final_model(model_id: str, folder: str): |
|
config = hf_hub_download(repo_id=model_id, filename="config.json") |
|
shutil.copy(config, os.path.join(folder, "config.json")) |
|
config = AutoConfig.from_pretrained(folder) |
|
|
|
_, (pt_model, pt_infos) = infer_framework_load_model(model_id, config, output_loading_info=True) |
|
_, (sf_model, sf_infos) = infer_framework_load_model(folder, config, output_loading_info=True) |
|
|
|
if pt_infos != sf_infos: |
|
error_string = create_diff(pt_infos, sf_infos) |
|
raise ValueError(f"Different infos when reloading the model: {error_string}") |
|
|
|
pt_params = pt_model.state_dict() |
|
sf_params = sf_model.state_dict() |
|
|
|
pt_shared = shared_pointers(pt_params) |
|
sf_shared = shared_pointers(sf_params) |
|
if pt_shared != sf_shared: |
|
raise RuntimeError("The reconstructed model is wrong, shared tensors are different {shared_pt} != {shared_tf}") |
|
|
|
sig = signature(pt_model.forward) |
|
input_ids = torch.arange(10).unsqueeze(0) |
|
pixel_values = torch.randn(1, 3, 224, 224) |
|
input_values = torch.arange(1000).float().unsqueeze(0) |
|
task_inputs = torch.randn(1,77) |
|
|
|
kwargs = {} |
|
if "input_ids" in sig.parameters: |
|
kwargs["input_ids"] = input_ids |
|
if "decoder_input_ids" in sig.parameters: |
|
kwargs["decoder_input_ids"] = input_ids |
|
if "pixel_values" in sig.parameters: |
|
kwargs["pixel_values"] = pixel_values |
|
if "input_values" in sig.parameters: |
|
kwargs["input_values"] = input_values |
|
if "bbox" in sig.parameters: |
|
kwargs["bbox"] = torch.zeros((1, 10, 4)).long() |
|
if "image" in sig.parameters: |
|
kwargs["image"] = pixel_values |
|
if "task_inputs" in sig.parameters: |
|
kwargs["task_inputs"] = task_inputs |
|
|
|
if torch.cuda.is_available(): |
|
pt_model = pt_model.cuda() |
|
sf_model = sf_model.cuda() |
|
kwargs = {k: v.cuda() for k, v in kwargs.items()} |
|
|
|
pt_logits = pt_model(**kwargs)[0] |
|
sf_logits = sf_model(**kwargs)[0] |
|
|
|
torch.testing.assert_close(sf_logits, pt_logits) |
|
print(f"Model {model_id} is ok !") |
|
|
|
|
|
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]: |
|
try: |
|
discussions = api.get_repo_discussions(repo_id=model_id) |
|
except Exception: |
|
return None |
|
for discussion in discussions: |
|
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: |
|
details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num) |
|
if details.target_branch == "refs/heads/main": |
|
return discussion |
|
|
|
|
|
def convert_generic(model_id: str, folder: str, filenames: Set[str]) -> List["CommitOperationAdd"]: |
|
operations = [] |
|
|
|
extensions = set([".bin", ".ckpt"]) |
|
for filename in filenames: |
|
prefix, ext = os.path.splitext(filename) |
|
if ext in extensions: |
|
pt_filename = hf_hub_download(model_id, filename=filename) |
|
dirname, raw_filename = os.path.split(filename) |
|
if raw_filename == "pytorch_model.bin": |
|
|
|
|
|
sf_in_repo = os.path.join(dirname, "model.safetensors") |
|
else: |
|
sf_in_repo = f"{prefix}.safetensors" |
|
sf_filename = os.path.join(folder, sf_in_repo) |
|
convert_file(pt_filename, sf_filename) |
|
operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename)) |
|
return operations |
|
|
|
|
|
def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]: |
|
pr_title = "Adding `safetensors` variant of this model" |
|
info = api.model_info(model_id) |
|
filenames = set(s.rfilename for s in info.siblings) |
|
|
|
with TemporaryDirectory() as d: |
|
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) |
|
os.makedirs(folder) |
|
new_pr = None |
|
try: |
|
operations = None |
|
pr = previous_pr(api, model_id, pr_title) |
|
|
|
library_name = getattr(info, "library_name", None) |
|
if any(filename.endswith(".safetensors") for filename in filenames) and not force: |
|
raise AlreadyExists(f"Model {model_id} is already converted, skipping..") |
|
elif pr is not None and not force: |
|
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}" |
|
new_pr = pr |
|
raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}") |
|
elif library_name == "transformers": |
|
if "pytorch_model.bin" in filenames: |
|
operations = convert_single(model_id, folder) |
|
elif "pytorch_model.bin.index.json" in filenames: |
|
operations = convert_multi(model_id, folder) |
|
else: |
|
raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert") |
|
check_final_model(model_id, folder) |
|
else: |
|
operations = convert_generic(model_id, folder, filenames) |
|
|
|
if operations: |
|
new_pr = api.create_commit( |
|
repo_id=model_id, |
|
operations=operations, |
|
commit_message=pr_title, |
|
commit_description=COMMIT_DESCRIPTION, |
|
create_pr=True, |
|
) |
|
print(f"Pr created at {new_pr.pr_url}") |
|
else: |
|
print("No files to convert") |
|
finally: |
|
shutil.rmtree(folder) |
|
return new_pr |
|
|
|
|
|
if __name__ == "__main__": |
|
DESCRIPTION = """ |
|
Simple utility tool to convert automatically some weights on the hub to `safetensors` format. |
|
It is PyTorch exclusive for now. |
|
It works by downloading the weights (PT), converting them locally, and uploading them back |
|
as a PR on the hub. |
|
""" |
|
parser = argparse.ArgumentParser(description=DESCRIPTION) |
|
parser.add_argument( |
|
"model_id", |
|
type=str, |
|
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`", |
|
) |
|
parser.add_argument( |
|
"--force", |
|
action="store_true", |
|
help="Create the PR even if it already exists of if the model was already converted.", |
|
) |
|
args = parser.parse_args() |
|
model_id = args.model_id |
|
api = HfApi() |
|
convert(api, model_id, force=args.force) |
|
|