File size: 15,803 Bytes
26268b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1ebd1
6778606
9560a0b
26268b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import gradio as gr
import pandas as pd
import json
import os
import glob

# === READ AND LOAD FILES ===

folder = '.'

data = pd.read_csv(os.path.join(folder, 'species_info.csv'))

with open(os.path.join(folder, 'translation.json'), 'r') as f:
  translation = json.load(f)

# Load the model
model = load_model(os.path.join(folder, 'keras_model.h5'))
# Load label file
with open(os.path.join(folder, 'labels.txt'),'r') as f:
    labels = f.readlines()

# === GLOBAL VARIABLES ===
language = ''
article = ""


def format_label(label):
  """
  From '0 rùa khác\n' to 'rùa khác'
  """
  try:
    int(label.split(' ')[0])
    return label[label.find(" ")+1:-1]
  except:
    return label[:-1]

def get_name(scientific_name, lan):
  """
  Return name in Vietnamese
  """
  return data[data[f'scientific_name'] == scientific_name][f'name_{lan}'].to_list()[0]

def get_fun_fact(scientific_name, lan):
  """
  Return fun fact of the species
  """
  return data[data[f'scientific_name'] == scientific_name][f'fun_fact_{lan}'].to_list()[0]

def get_law(scientific_name):
  cites = data[data['scientific_name'] == scientific_name]['CITES'].to_list()[0]
  nd06 = data[data['scientific_name'] == scientific_name]['ND06'].to_list()[0]
  return cites, nd06

def get_habitat(scientific_name, lan):
  return data[data['scientific_name'] == scientific_name][f'habitat_{lan}'].to_list()[0]

def get_conservation_status(scientific_name, lan):
  status_list = ['NE', 'DD', 'LC', 'NT', 'VU', 'EN', 'CR', 'EW', 'EX']
  status = data[data['scientific_name'] == scientific_name]['IUCN'].to_list()[0]
  for s in status_list:
    if s in status:
      return translation['conservation_status'][s][lan]

def get_language_code(lan):
  global language
  if lan == "Tiếng Việt":
    language = 'vi'
  if lan == "English":
    language = 'en'

  return language

def get_species_list():
  """
  Example:
  ['Indotestudo elongata',
  'Cuora galbinifrons',
  'Cuora mouhotii',
  'Cuora bourreti']
  """
  return [format_label(s) for s in labels]

def get_species_abbreviation(scientific_name):
  return "".join([s[0] for s in scientific_name.split()])

def get_species_abbreviation_list():
  """
  Example:
  ['Ie', 'Cg', 'Cm', 'Cb']
  """
  return [get_species_abbreviation(s) for s in get_species_list()]

def get_description(language):
  num_class = len(labels)
  num_native = 0
  num_non_native = 0

  native_list = ''
  non_native_list = ''

  for i in labels:
    label = format_label(i)
    if label in data[data.native == 'y'].scientific_name.values:
      num_native += 1
      native_list += f"({num_native}) {get_name(label, language)}, "
    else:
      num_non_native += 1
      non_native_list += f"({num_non_native}) {get_name(label, language)}, "

  if language=='vi':
    description=f"""
    VNTurtle nhận diện các loài rùa Việt Nam. Mô hình này có thể nhận diện **{num_class}** loại rùa thường xuất hiện ở VN gồm
    - **{num_native}** loài bản địa: {native_list} \n\n
    - **{num_non_native}** loài ngoại lai: {non_native_list}
    """
  if language=='en':
    description=f"""
    VNTurtle can recognize turtle species in Vietnam. This model can identify {num_class} common turtles in Vietnam including **{num_native}** native species \n\n
    {native_list} \n\n
    and **{num_non_native}** non-native species \n\n
    {non_native_list}
    """
  return description

def update_language(language):
  language = get_language_code(language)
  return get_description(language), \
          translation['label']['label_run_btn'][language], \
          translation["accordion"]["fun_fact"][language], \
          translation["accordion"]["status"][language], \
          translation["accordion"]["law"][language], \
          translation["accordion"]["info"][language]

def predict(image):
  # Create the array of the right shape to feed into the keras model
  # The 'length' or number of images you can put into the array is
  # determined by the first position in the shape tuple, in this case 1.
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
  #resize the image to a 224x224 with the same strategy as in TM2:
  #resizing the image to be at least 224x224 and then cropping from the center
  size = (224, 224)
  image = ImageOps.fit(image, size, Image.ANTIALIAS)

  #turn the image into a numpy array
  image_array = np.asarray(image)
  # Normalize the image
  normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
  # Load the image into the array
  data[0] = normalized_image_array

  # run the inference
  pred = model.predict(data)
  pred = pred.tolist()

  return pred 

result = {}
best_prediction = ''

def interpret_prediction(prediction):
  global result

  sorted_index = np.argsort(prediction).tolist()[0]

  display_index = []
  for i in sorted_index[::-1]:
    if prediction[0][i] > 0.01:
      display_index.append(i)
  
  # best_prediction = format_label(labels[sorted_index[-1]]).strip()

  result = {format_label(labels[i]): round(prediction[0][i],2) for i in display_index}

  # return best_prediction

def run_btn_click(image):
  global best_prediction 
  best_prediction = None
  global article
  article = translation["info"]["ATP_contact"][language]

  interpret_prediction(predict(image))

  visible_result = [
      False, 
      False,
      False,
      False,
      False
  ] 

  image_result = [
      os.path.join(folder, 'examples', 'empty.JPG'),
      os.path.join(folder, 'examples', 'empty.JPG'),
      os.path.join(folder, 'examples', 'empty.JPG'),
      os.path.join(folder, 'examples', 'empty.JPG'),
      os.path.join(folder, 'examples', 'empty.JPG')
  ]

  percent_result = [
      "", 
      "", 
      "", 
      "", 
      ""
  ] 

  species_result = [
      "", 
      "", 
      "", 
      "", 
      ""
  ] 

  for i, (species, percent) in enumerate(result.items()):
    print(species, result)
    visible_result[i] = True
    image_result[i] = os.path.join(folder, 'examples', f'test_{get_species_abbreviation(species)}.JPG')
    percent_result[i] = f'{round(percent*100)}%'
    species_result[i] = species

  return  gr.Accordion.update(open=True, visible=True), \
          gr.Image.update(value=image_result[0], visible=visible_result[0]), \
            gr.HighlightedText.update(value=[('', percent_result[0])], label=species_result[0], visible=visible_result[0]), \
            gr.Button.update(visible=visible_result[0]), \
            \
          gr.Image.update(value=image_result[1], visible=visible_result[1]), \
            gr.HighlightedText.update(value=[('', percent_result[1])], label=species_result[1], visible=visible_result[1]), \
            gr.Button.update(visible=visible_result[1]), \
            \
          gr.Image.update(value=image_result[2], visible=visible_result[2]), \
            gr.HighlightedText.update(value=[('', percent_result[2])], label=species_result[2], visible=visible_result[2]), \
            gr.Button.update(visible=visible_result[2]), \
            \
          gr.Image.update(value=image_result[3], visible=visible_result[3]), \
            gr.HighlightedText.update(value=[('', percent_result[3])], label=species_result[3], visible=visible_result[3]), \
            gr.Button.update(visible=visible_result[3]), \
            \
          gr.Image.update(value=image_result[4], visible=visible_result[4]), \
            gr.HighlightedText.update(value=[('', percent_result[4])], label=species_result[4], visible=visible_result[4]), \
            gr.Button.update(visible=visible_result[4]), \
            gr.Accordion.update(visible=False), \
            []
            # gr.Accordion.update(visible=False), \
            # gr.Accordion.update(visible=False), \
            # gr.Accordion.update(visible=False), \
            # gr.Accordion.update(visible=False), \
            # gr.Markdown.update(value=percent_result[4], visible=visible_result[4]), \


def get_image_gallery_species_1():
  global best_prediction
  for i, name in enumerate(result):
    if i == 0:
      best_prediction = name
      return glob.glob(os.path.join(folder, 'gallery', name, '*'))

def get_image_gallery_species_2():
  global best_prediction
  for i, name in enumerate(result):
    if i == 1:
      best_prediction = name
      return glob.glob(os.path.join(folder, 'gallery', name, '*'))

def get_image_gallery_species_3():
  global best_prediction
  for i, name in enumerate(result):
    if i == 2:
      best_prediction = name
      return glob.glob(os.path.join(folder, 'gallery', name, '*'))

def get_image_gallery_species_4():
  global best_prediction
  for i, name in enumerate(result):
    if i == 3:
      best_prediction = name
      return glob.glob(os.path.join(folder, 'gallery', name, '*'))

def get_image_gallery_species_5():
  global best_prediction
  for i, name in enumerate(result):
    if i == 4:
      best_prediction = name
      return glob.glob(os.path.join(folder, 'gallery', name, '*'))

def display_info():  
  cites, nd06 = get_law(best_prediction)

  fun_fact = f"{get_fun_fact(best_prediction, language)}."

  status = f"{get_conservation_status(best_prediction, language)}"
  
  law = f'CITES: {cites}, NĐ06: {nd06}'

  info = ""

  if str(nd06) != "":
    law_protection = translation["info"]["law_protection"][language]    
    report = translation["info"]["report"][language]
    deliver = translation["info"]["deliver"][language]
    release = translation["info"]["release"][language] + f" **{get_habitat(best_prediction, language)}**"
  
  info = f"- {law_protection}\n\n- {report}\n\n- {deliver}\n\n- {release}"

  return gr.Accordion.update(visible=True), \
          gr.Accordion.update(open=False), \
          gr.Accordion.update(visible=True), \
          gr.Accordion.update(visible=True), \
          gr.Accordion.update(visible=True), \
          gr.Accordion.update(visible=True), \
          fun_fact, status, law, info

default_lan = 'Tiếng Việt'

with gr.Blocks() as demo:
  gr.Markdown("# VNTurtle")
  radio_lan = gr.Radio(choices=['Tiếng Việt', 'English'], value=default_lan, label='Ngôn ngữ/Language', show_label=True, interactive=True)
  md_des = gr.Markdown(get_description(get_language_code(default_lan)))

  with gr.Row(equal_height=True):
    inp = gr.Image(type="pil", show_label=True, label='Ảnh tải lên', interactive=True).style(height=250)
    gallery = gr.Gallery(show_label=True, label='Ảnh đối chiếu').style(grid=[4], height="auto")
  with gr.Row():
    run_btn = gr.Button(translation['label']['label_run_btn'][get_language_code(default_lan)])
    result_verify_btn = gr.Button(translation['label']['label_verify_btn'][get_language_code(default_lan)], visible=True)

  accordion_result_section = gr.Accordion(translation["accordion"]["result_section"][get_language_code(default_lan)], open=True, visible=False)

  with accordion_result_section:
    with gr.Row() as display_result:
      with gr.Column(scale=0.2, min_width=150) as result_1:
        result_percent_1 =  gr.HighlightedText(show_label=True, visible=False).style(color_map={f'{i}%': 'green' for i in range(101)})
        # result_percent_1 = gr.Markdown("", visible=False)
        result_img_1 = gr.Image(interactive=False, visible=False, show_label=False)
        result_view_btn_1 = gr.Button(translation['label']['label_check_btn'][get_language_code(default_lan)], visible=False)
      with gr.Column(scale=0.2, min_width=150) as result_2:
        result_percent_2 = gr.HighlightedText(show_label=True, visible=False).style(color_map={f'{i}%': 'yellow' for i in range(101)})
        result_img_2 = gr.Image(interactive=False, visible=False, show_label=False)
        result_view_btn_2 = gr.Button(translation['label']['label_check_btn'][get_language_code(default_lan)], visible=False)
      with gr.Column(scale=0.2, min_width=150) as result_3:
        result_percent_3 = gr.HighlightedText(show_label=True, visible=False).style(color_map={f'{i}%': 'orange' for i in range(101)})
        result_img_3 = gr.Image(interactive=False, visible=False, show_label=False)
        result_view_btn_3 = gr.Button(translation['label']['label_check_btn'][get_language_code(default_lan)], visible=False)
      with gr.Column(scale=0.2, min_width=150) as result_4:
        result_percent_4 = gr.HighlightedText(show_label=True, visible=False).style(color_map={f'{i}%': 'chocolate' for i in range(101)})
        result_img_4 = gr.Image(interactive=False, visible=False, show_label=False)
        result_view_btn_4 = gr.Button(translation['label']['label_check_btn'][get_language_code(default_lan)], visible=False)
      with gr.Column(scale=0.2, min_width=150) as result_5:
        result_percent_5 = gr.HighlightedText(show_label=True, visible=False).style(color_map={f'{i}%': 'grey' for i in range(101)})
        result_img_5 = gr.Image(interactive=False, visible=False, show_label=False)
        result_view_btn_5 = gr.Button(translation['label']['label_check_btn'][get_language_code(default_lan)], visible=False)
  
  accordion_info_section = gr.Accordion(translation['accordion']['info_section'][get_language_code(default_lan)], visible=False, open=True)

  with accordion_info_section:
    accordion_fun_fact = gr.Accordion(translation["accordion"]["fun_fact"][get_language_code(default_lan)], open=False, visible=False)
    accordion_status = gr.Accordion(translation["accordion"]["status"][get_language_code(default_lan)], open=False, visible=False)
    accordion_law = gr.Accordion(translation["accordion"]["law"][get_language_code(default_lan)], open=False, visible=False)
    accordion_info = gr.Accordion(translation["accordion"]["info"][get_language_code(default_lan)], open=False, visible=False)

    with accordion_fun_fact:
      md_fun_fact = gr.Markdown()
    with accordion_status:
      md_status = gr.Markdown()
    with accordion_law:
      md_law = gr.Markdown()
    with accordion_info:
      md_info = gr.Markdown()

  gr.Markdown("---")
  with gr.Accordion("🌅 Ảnh thử nghiệm", open=False):
    gr.Examples(
      examples=[[os.path.join(folder, 'examples', f'test_{get_species_abbreviation(s)}.JPG'), get_name(s, language)] for s in get_species_list()],
      inputs=[inp],
      label=""
      )
  radio_lan.change(fn=update_language, inputs=[radio_lan], outputs=[
      md_des, 
      run_btn, 
      accordion_fun_fact, 
      accordion_status, 
      accordion_law, 
      accordion_info
      ])
  run_btn.click(fn=run_btn_click, inputs=inp, outputs= [
      accordion_result_section,
      # md_fun_fact, md_status, md_law, md_info,
      result_img_1, result_percent_1, result_view_btn_1,
      result_img_2, result_percent_2, result_view_btn_2,
      result_img_3, result_percent_3, result_view_btn_3,
      result_img_4, result_percent_4, result_view_btn_4,
      result_img_5, result_percent_5, result_view_btn_5,
      # accordion_fun_fact, accordion_status, accordion_law, accordion_info, 
      accordion_info_section,
      gallery
  ], show_progress=True, scroll_to_output=True)

  result_view_btn_1.click(fn=get_image_gallery_species_1, outputs=gallery)
  result_view_btn_2.click(fn=get_image_gallery_species_2, outputs=gallery)
  result_view_btn_3.click(fn=get_image_gallery_species_3, outputs=gallery)
  result_view_btn_4.click(fn=get_image_gallery_species_4, outputs=gallery)
  result_view_btn_5.click(fn=get_image_gallery_species_5, outputs=gallery)

  result_verify_btn.click(fn=display_info, outputs=[
      accordion_info_section,
      accordion_result_section,
      accordion_fun_fact,
      accordion_status,
      accordion_law,
      accordion_info,
      md_fun_fact,
      md_status,
      md_law,
      md_info,
  ], scroll_to_output=True)

demo.launch(debug=False)