File size: 791 Bytes
7804fbe
5509100
6189582
 
7804fbe
 
1751d3f
 
7804fbe
 
 
 
 
 
1751d3f
7804fbe
 
 
 
 
 
1751d3f
34ec86b
1751d3f
1471381
9c0a4a0
1751d3f
f68a643
7804fbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import tensorflow as tf
import gradio as gr
import numpy as np

# Load the CNN model from the .h5 file
model = tf.keras.models.load_model('mnist_cnn_model.h5')

def predict_digit(image):
    # Preprocess the input image
    image = np.expand_dims(image, axis=0)  # Add batch dimension
    image = image / 255.0  # Normalize pixel values

    # Make predictions
    predictions = model.predict(image)

    # Get the predicted digit
    predicted_digit = np.argmax(predictions)

    return predicted_digit

# Define Gradio interface
gr.Interface(
    title="Reconnaissance d'écriture manuscrite des données MNIST by Papa Sega",
    fn=predict_digit, 
    inputs=gr.Sketchpad(label="Desinner le chiffre ici",  height=300, width=800),
    outputs="number",
    live=True
).launch(debug=True)