Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import numpy as np | |
# from modelutil import create_model | |
# def predict_digit(image): | |
# try: | |
# if image == None: pass | |
# except: | |
# model = create_model() | |
# predictions = model.predict(image.reshape(1, 28, 28)) | |
# return np.argmax(predictions) | |
# gr.Interface( | |
# title="MNIST Digit Classifier by Papa Sega", | |
# fn=predict_digit, | |
# inputs=gr.Sketchpad( label="Draw a digit"), | |
# outputs="number", | |
# live=True | |
# ).launch() | |
import tensorflow as tf | |
import gradio as gr | |
import numpy as np | |
# Load the CNN model from the .h5 file | |
model = tf.keras.models.load_model('mnist_cnn_model.h5') | |
def predict_digit(image): | |
# Preprocess the input image | |
image = np.expand_dims(image, axis=0) # Add batch dimension | |
image = image / 255.0 # Normalize pixel values | |
# Make predictions | |
predictions = model.predict(image) | |
# Get the predicted digit | |
predicted_digit = np.argmax(predictions) | |
return predicted_digit | |
# Define Gradio interface | |
gr.Interface( | |
title="MNIST Digit Classifier by Papa Sega", | |
fn=predict_digit, | |
inputs=gr.Sketchpad(label="Draw a digit", height=500, width=500), | |
outputs="number", | |
live=True | |
).launch(debug=True) | |