papasega commited on
Commit
b79b2d0
1 Parent(s): bd1dfb3

Update modelutil.py

Browse files
Files changed (1) hide show
  1. modelutil.py +27 -13
modelutil.py CHANGED
@@ -1,24 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import tensorflow as tf
2
 
3
  def create_model():
4
-
5
  LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"),
6
  tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"),
7
  tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"),
8
  tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")]
9
 
10
  model = tf.keras.models.Sequential(LAYERS)
11
-
12
- model.load_weights('./checkpoint')
13
-
14
-
15
- # LOSS_FUNCTION = tf.keras.losses.SparseCategoricalCrossentropy() # HERE
16
- # OPTIMIZER = tf.keras.optimizers.legacy.Adam()
17
- # METRICS = ["accuracy"]
18
- # model.compile(loss=LOSS_FUNCTION,
19
- # optimizer=OPTIMIZER,
20
- # metrics=METRICS)
21
-
22
  return model
23
 
24
-
 
 
1
+ # import tensorflow as tf
2
+
3
+ # def create_model():
4
+
5
+ # LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"),
6
+ # tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"),
7
+ # tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"),
8
+ # tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")]
9
+
10
+ # model = tf.keras.models.Sequential(LAYERS)
11
+
12
+ # model.load_weights('./checkpoint')
13
+
14
+
15
+ # # LOSS_FUNCTION = tf.keras.losses.SparseCategoricalCrossentropy() # HERE
16
+ # # OPTIMIZER = tf.keras.optimizers.legacy.Adam()
17
+ # # METRICS = ["accuracy"]
18
+ # # model.compile(loss=LOSS_FUNCTION,
19
+ # # optimizer=OPTIMIZER,
20
+ # # metrics=METRICS)
21
+
22
+ # return model
23
+
24
+
25
+
26
  import tensorflow as tf
27
 
28
  def create_model():
 
29
  LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"),
30
  tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"),
31
  tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"),
32
  tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")]
33
 
34
  model = tf.keras.models.Sequential(LAYERS)
 
 
 
 
 
 
 
 
 
 
 
35
  return model
36
 
37
+ def load_model_weights(model, checkpoint_path):
38
+ model.load_weights(checkpoint_path)