# import gradio as gr # import numpy as np # from modelutil import create_model # def predict_digit(image): # try: # if image == None: pass # except: # model = create_model() # predictions = model.predict(image.reshape(1, 28, 28)) # return np.argmax(predictions) # gr.Interface( # title="MNIST Digit Classifier by Papa Sega", # fn=predict_digit, # inputs=gr.Sketchpad( label="Draw a digit"), # outputs="number", # live=True # ).launch() def load_model_weights(model, checkpoint_path): model.load_weights(checkpoint_path) import gradio as gr import numpy as np from modelutil import create_model, load_model_weights checkpoint_path = './checkpoint' model = create_model() load_model_weights(model, checkpoint_path) def predict_digit(image): predictions = model.predict(image.reshape(1, 28, 28)) return np.argmax(predictions) gr.Interface( title="MNIST Digit Classifier by Papa Sega", fn=predict_digit, inputs=gr.Sketchpad(label="Draw a digit"), outputs="number", live=True ).launch()