import tensorflow as tf import gradio as gr import numpy as np # Load the CNN model from the .h5 file model = tf.keras.models.load_model('mnist_cnn_model.h5') def predict_digit(image): # Preprocess the input image image = np.expand_dims(image, axis=0) # Add batch dimension image = image / 255.0 # Normalize pixel values # Make predictions predictions = model.predict(image) # Get the predicted digit predicted_digit = np.argmax(predictions) return predicted_digit # Define Gradio interface gr.Interface( title="Reconnaissance d'écriture manuscrite des données MNIST by Papa Sega", fn=predict_digit, inputs=gr.Sketchpad(label="Desinner le chiffre ici", height=300, width=800), outputs="number", live=True ).launch(debug=True)