# import tensorflow as tf # def create_model(): # LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"), # tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"), # tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"), # tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")] # model = tf.keras.models.Sequential(LAYERS) # model.load_weights('./checkpoint') # # LOSS_FUNCTION = tf.keras.losses.SparseCategoricalCrossentropy() # HERE # # OPTIMIZER = tf.keras.optimizers.legacy.Adam() # # METRICS = ["accuracy"] # # model.compile(loss=LOSS_FUNCTION, # # optimizer=OPTIMIZER, # # metrics=METRICS) # return model import tensorflow as tf def create_model(): LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"), tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"), tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"), tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")] model = tf.keras.models.Sequential(LAYERS) return model def load_model_weights(model, checkpoint_path): model.load_weights(checkpoint_path)