Spaces:
Build error
Build error
File size: 15,573 Bytes
9aba307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
"""
dbert.py
Provides the dBert class that implements Reader using BERT contextual embeddings to disambiguate heteronyms.
"""
import logging
import os
from pathlib import Path
import numpy as np
import torch
from speach.ttlig import RubyFrag, RubyToken
from transformers import (
AutoModelForTokenClassification,
BertJapaneseTokenizer,
DataCollatorForTokenClassification,
EarlyStoppingCallback,
Trainer,
TrainingArguments,
)
from config import config
from config.config import logger
from yomikata import utils
from yomikata.reader import Reader
from yomikata.utils import LabelEncoder
logging.getLogger("transformers").setLevel(logging.ERROR)
logging.getLogger("transformers.trainer").setLevel(logging.ERROR)
logging.getLogger("datasets").setLevel(logging.ERROR)
class dBert(Reader):
def __init__(
self,
artifacts_dir: Path = Path(config.STORES_DIR, "dbert"),
reinitialize: bool = False,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
) -> None:
# Set the device
self.device = device
logger.info(f"Running on {self.device}")
if self.device.type == "cuda":
logger.info(torch.cuda.get_device_name(0))
# Hardcoded parameters
self.max_length = 128
# Load the model
self.artifacts_dir = artifacts_dir
if reinitialize:
# load tokenizer from upstream huggingface repository
default_model = "cl-tohoku/bert-base-japanese-v2"
self.tokenizer = BertJapaneseTokenizer.from_pretrained(default_model)
logger.info(f"Using {default_model} tokenizer")
# load the heteronyms list
self.heteronyms = config.HETERONYMS
# make the label encoder
label_list = ["<OTHER>"]
for i, heteronym in enumerate(self.heteronyms.keys()):
for j, reading in enumerate(self.heteronyms[heteronym]):
label_list.append(heteronym + ":" + reading)
self.label_encoder = LabelEncoder()
self.label_encoder.fit(label_list)
logger.info("Made label encoder with default heteronyms")
# add surface forms to tokenizer vocab
surfaces = list(
set([x.split(":")[0] for x in self.label_encoder.classes if x != "<OTHER>"])
)
new_tokens = [
surface
for surface in surfaces
if surface
not in (list(self.tokenizer.vocab.keys()) + list(self.tokenizer.get_added_vocab()))
]
self.tokenizer.add_tokens(new_tokens)
if len(new_tokens) > 0:
logger.info(f"Added {len(new_tokens)} surface forms to tokenizer vocab")
# check that new tokens were added properly
assert [
self.tokenizer.decode(
self.tokenizer.encode(
[surface],
add_special_tokens=False,
)
)
for surface in surfaces
] == surfaces
self.surfaceIDs = self.tokenizer.encode(
list(set([x.split(":")[0] for x in self.label_encoder.classes if x != "<OTHER>"])),
add_special_tokens=False,
)
assert len(self.surfaceIDs) == len(surfaces)
# Load model from upstream huggingface repository
self.model = AutoModelForTokenClassification.from_pretrained(
default_model, num_labels=len(self.label_encoder.classes)
)
self.model.resize_token_embeddings(len(self.tokenizer))
logger.info(f"Using model {default_model}")
self.save(artifacts_dir)
else:
self.load(artifacts_dir)
def load(self, directory):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(directory)
self.model = AutoModelForTokenClassification.from_pretrained(directory).to(self.device)
self.label_encoder = LabelEncoder.load(Path(directory, "label_encoder.json"))
self.heteronyms = utils.load_dict(Path(directory, "heteronyms.json"))
self.surfaceIDs = self.tokenizer.encode(
list(set([x.split(":")[0] for x in self.label_encoder.classes if x != "<OTHER>"])),
add_special_tokens=False,
)
logger.info(f"Loaded model from directory {directory}")
def save(self, directory):
self.tokenizer.save_pretrained(directory)
self.model.save_pretrained(directory)
self.label_encoder.save(Path(directory, "label_encoder.json"))
utils.save_dict(self.heteronyms, Path(directory, "heteronyms.json"))
logger.info(f"Saved model to directory {directory}")
def batch_preprocess_function(self, entries, pad=False):
inputs = [entry for entry in entries["sentence"]]
furiganas = [entry for entry in entries["furigana"]]
if pad:
tokenized_inputs = self.tokenizer(
inputs,
max_length=self.max_length,
truncation=True,
padding="max_length",
# return_tensors="np",
)
else:
tokenized_inputs = self.tokenizer(
inputs,
max_length=self.max_length,
truncation=True,
)
labels = []
for i, input_ids in enumerate(tokenized_inputs["input_ids"]):
furigana_temp = furiganas[i]
label_ids = []
assert inputs[i] == utils.remove_furigana(furiganas[i])
for j, input_id in enumerate(input_ids):
if input_id not in self.surfaceIDs:
label = -100
else:
surface = self.tokenizer.decode([input_id])
try:
reading_start_idx = furigana_temp.index(surface) + len(surface)
furigana_temp = furigana_temp[reading_start_idx + 1 :]
reading_end_idx = furigana_temp.index("}")
reading = furigana_temp[:reading_end_idx]
furigana_temp = furigana_temp[reading_end_idx + 1 :]
label = self.label_encoder.class_to_index[surface + ":" + reading]
except KeyError:
# this means there's an unknown reading
label = 0
except ValueError:
# this means that the surface form is not present in the furigana
# probably it got split between two different words
label = 0
label_ids.append(label)
assert len(label_ids) == len(input_ids)
labels.append(label_ids)
assert len(labels) == len(tokenized_inputs["input_ids"])
return {
"input_ids": tokenized_inputs["input_ids"],
"attention_mask": tokenized_inputs["attention_mask"],
"labels": labels,
}
def train(self, dataset, training_args={}) -> dict:
dataset = dataset.map(
self.batch_preprocess_function, batched=True, fn_kwargs={"pad": False}
)
dataset = dataset.filter(
lambda entry: any(x in entry["input_ids"] for x in list(self.surfaceIDs))
)
# put the model in training mode
self.model.train()
default_training_args = {
"output_dir": self.artifacts_dir,
"num_train_epochs": 10,
"evaluation_strategy": "steps",
"eval_steps": 10,
"logging_strategy": "steps",
"logging_steps": 10,
"save_strategy": "steps",
"save_steps": 10,
"learning_rate": 2e-5,
"per_device_train_batch_size": 128,
"per_device_eval_batch_size": 128,
"load_best_model_at_end": True,
"metric_for_best_model": "loss",
"weight_decay": 0.01,
"save_total_limit": 3,
"fp16": True,
"report_to": "tensorboard",
}
default_training_args.update(training_args)
training_args = default_training_args
# Not padding in batch_preprocess_function so need data_collator for trainer
data_collator = DataCollatorForTokenClassification(tokenizer=self.tokenizer, padding=True)
if "val" in list(dataset):
trainer = Trainer(
model=self.model,
args=TrainingArguments(**training_args),
train_dataset=dataset["train"],
eval_dataset=dataset["val"],
tokenizer=self.tokenizer,
callbacks=[
EarlyStoppingCallback(early_stopping_patience=5),
],
data_collator=data_collator,
)
else:
trainer = Trainer(
model=self.model,
args=TrainingArguments(**training_args),
train_dataset=dataset["train"],
tokenizer=self.tokenizer,
data_collator=data_collator,
)
result = trainer.train()
# Output some training information
print(f"Time: {result.metrics['train_runtime']:.2f}")
print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
gpu_index = int(os.environ["CUDA_VISIBLE_DEVICES"])
utils.print_gpu_utilization(gpu_index)
# Get metrics for each train/val/split
self.model.eval()
full_performance = {}
for key in dataset.keys():
max_evals = min(100000, len(dataset[key]))
# max_evals = len(dataset[key])
logger.info(f"getting predictions for {key}")
subset = dataset[key].shuffle().select(range(max_evals))
prediction_output = trainer.predict(subset)
logger.info(f"processing predictions for {key}")
metrics = prediction_output[2]
labels = prediction_output[1]
predictions = np.argmax(prediction_output[0], axis=2)
true_inputs = [
self.tokenizer.decode([input_id])
for row in subset["input_ids"]
for input_id in row
if input_id in self.surfaceIDs
]
true_predictions = [
str(self.label_encoder.index_to_class[p])
for prediction, label in zip(predictions, labels)
for (p, l) in zip(prediction, label)
if l != -100
]
true_labels = [
str(self.label_encoder.index_to_class[l])
for prediction, label in zip(predictions, labels)
for (p, l) in zip(prediction, label)
if l != -100
]
logger.info("processing performance")
performance = {
heteronym: {
"n": 0,
"readings": {
reading: {
"n": 0,
"found": {
readingprime: 0
for readingprime in list(self.heteronyms[heteronym].keys())
+ ["<OTHER>"]
},
}
for reading in list(self.heteronyms[heteronym].keys()) + ["<OTHER>"]
},
}
for heteronym in self.heteronyms.keys()
}
for i, surface in enumerate(true_inputs):
performance[surface]["n"] += 1
true_reading = true_labels[i].split(":")[-1]
performance[surface]["readings"][true_reading]["n"] += 1
if true_predictions[i] != "<OTHER>":
if true_predictions[i].split(":")[0] != surface:
logger.warning(f"big failure at {surface} {true_predictions[i]}")
found_reading = "<OTHER>"
else:
found_reading = true_predictions[i].split(":")[1]
else:
found_reading = "<OTHER>"
performance[surface]["readings"][true_reading]["found"][found_reading] += 1
# if found_reading != true_reading:
# # pass
# logger.info(
# f"Predicted {found_reading} instead of {true_reading} in {subset["furigana"][furi_rows[i]]}"
# )
n = 0
correct = 0
for surface in performance.keys():
for true_reading in performance[surface]["readings"].keys():
performance[surface]["readings"][true_reading]["accuracy"] = np.round(
performance[surface]["readings"][true_reading]["found"][true_reading]
/ np.array(performance[surface]["readings"][true_reading]["n"]),
3,
)
performance[surface]["accuracy"] = np.round(
sum(
performance[surface]["readings"][true_reading]["found"][true_reading]
for true_reading in performance[surface]["readings"].keys()
)
/ np.array(performance[surface]["n"]),
3,
)
correct += sum(
performance[surface]["readings"][true_reading]["found"][true_reading]
for true_reading in performance[surface]["readings"].keys()
)
n += performance[surface]["n"]
performance = {
"metrics": metrics,
"accuracy": round(correct / n, 3),
"heteronym_performance": performance,
}
full_performance[key] = performance
trainer.save_model()
return full_performance
def furigana(self, text: str) -> str:
text = utils.standardize_text(text)
text = utils.remove_furigana(text)
text = text.replace("{", "").replace("}", "")
self.model.eval()
text_encoded = self.tokenizer(
text,
max_length=self.max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_encoded["input_ids"].to(self.device)
input_mask = text_encoded["attention_mask"].to(self.device)
logits = self.model(input_ids=input_ids, attention_mask=input_mask).logits
predictions = torch.argmax(logits, dim=2)
output_ruby = []
for (i, p) in enumerate(predictions[0]):
text = self.tokenizer.decode([input_ids[0][i]])
if text in ["[CLS]", "[SEP]"]:
continue
if text[:2] == "##":
text = text[2:]
if input_ids[0][i].item() in self.surfaceIDs:
furi = self.label_encoder.index_to_class[p.item()]
if furi == "<OTHER>":
output_ruby.append(f"{{{text}}}")
elif furi.split(":")[0] != text:
output_ruby.append(f"{{{text}}}")
else:
output_ruby.append(RubyFrag(text=text, furi=furi.split(":")[1]))
else:
output_ruby.append(text)
return RubyToken(groups=output_ruby).to_code()
|