File size: 5,984 Bytes
9aba307
 
d41e82b
 
9aba307
 
 
 
 
 
 
 
 
 
8061dc1
 
 
 
 
9aba307
 
8061dc1
 
9aba307
8061dc1
 
9aba307
 
8061dc1
 
 
9aba307
8061dc1
 
9aba307
 
8061dc1
 
 
 
9aba307
8061dc1
9aba307
8061dc1
37b2b22
8061dc1
 
37b2b22
8061dc1
37b2b22
8061dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
8061dc1
37b2b22
 
8061dc1
 
 
 
 
 
 
 
 
 
37b2b22
8061dc1
 
 
 
 
 
 
37b2b22
8061dc1
 
 
 
 
 
 
 
 
37b2b22
 
8061dc1
37b2b22
8061dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2b22
ba074a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2b22
e640827
 
 
 
37b2b22
e640827
 
37b2b22
e640827
 
 
37b2b22
e640827
37b2b22
e640827
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""app.py
streamlit demo of yomikata"""
from pathlib import Path

import pandas as pd
import spacy
import streamlit as st
from speach import ttlig

from yomikata import utils
from yomikata.dictionary import Dictionary
from yomikata.utils import parse_furigana


@st.cache
def add_border(html: str):
    WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.0rem; display: inline-block">{}</div>"""
    html = html.replace("\n", " ")
    return WRAPPER.format(html)


def get_random_sentence():
    from config.config import TEST_DATA_DIR

    df = pd.read_csv(Path(TEST_DATA_DIR, "test_optimized_strict_heteronyms.csv"))
    return df.sample(1).iloc[0].sentence


@st.cache
def get_dbert_prediction_and_heteronym_list(text):
    from yomikata.dbert import dBert

    reader = dBert()
    return reader.furigana(text), reader.heteronyms


@st.cache
def get_stats():
    from config import config
    from yomikata.utils import load_dict

    stats = load_dict(Path(config.STORES_DIR, "dbert/training_performance.json"))

    global_accuracy = stats["test"]["accuracy"]

    stats = stats["test"]["heteronym_performance"]
    heteronyms = stats.keys()

    accuracy = [stats[heteronym]["accuracy"] for heteronym in heteronyms]

    readings = [
        "ใ€".join(
            [
                "{reading} ({correct}/{n})".format(
                    reading=reading,
                    correct=stats[heteronym]["readings"][reading]["found"][reading],
                    n=stats[heteronym]["readings"][reading]["n"],
                )
                for reading in stats[heteronym]["readings"].keys()
                if (
                    stats[heteronym]["readings"][reading]["found"][reading] != 0
                    or reading != "<OTHER>"
                )
            ]
        )
        for heteronym in heteronyms
    ]

    # if reading != '<OTHER>'

    df = pd.DataFrame({"heteronym": heteronyms, "accuracy": accuracy, "readings": readings})

    df = df[df["readings"].str.contains("ใ€")]

    df["readings"] = df["readings"].str.replace("<OTHER>", "Other")

    df = df.rename(columns={"readings": "readings (test corr./total)"})

    df = df.sort_values("accuracy", ascending=False, ignore_index=True)

    df.index += 1

    return global_accuracy, df


@st.cache
def furigana_to_spacy(text_with_furigana):
    tokens = parse_furigana(text_with_furigana)
    ents = []
    output_text = ""
    heteronym_count = 0
    for token in tokens.groups:
        if isinstance(token, ttlig.RubyFrag):
            if heteronym_count != 0:
                output_text += ", "

            ents.append(
                {
                    "start": len(output_text),
                    "end": len(output_text) + len(token.text),
                    "label": token.furi,
                }
            )

            output_text += token.text
            heteronym_count += 1
        else:
            pass
    return {
        "text": output_text,
        "ents": ents,
        "title": None,
    }


st.title("Yomikata: Disambiguate Japanese Heteronyms with a BERT model")

# Input text box
st.markdown("Input a Japanese sentence:")

if "default_sentence" not in st.session_state:
    st.session_state.default_sentence = "ใˆใ€{ไบบ้–“/ใซใ‚“ใ’ใ‚“}ใจใ„ใ†ใ‚‚ใฎใ‹ใ„? {ไบบ้–“/ใซใ‚“ใ’ใ‚“}ใจใ„ใ†ใ‚‚ใฎใฏ{่ง’/ใคใฎ}ใฎ{็”Ÿ/ใฏ}ใˆใชใ„ใ€{็”Ÿ็™ฝ/ใชใพใ˜ใ‚}ใ„{้ก”/ใ‹ใŠ}ใ‚„{ๆ‰‹่ถณ/ใฆใ‚ใ—}ใ‚’ใ—ใŸใ€{ไฝ•/ใชใ‚“}ใจใ‚‚ใ„ใ‚ใ‚Œใš{ๆฐ—ๅ‘ณ/ใใฟ}ใฎ{ๆ‚ช/ใ‚ใ‚‹}ใ„ใ‚‚ใฎใ ใ‚ˆใ€‚"

input_text = st.text_area(
    "Input a Japanese sentence:",
    utils.remove_furigana(st.session_state.default_sentence),
    label_visibility="collapsed",
)

# Yomikata prediction
dbert_prediction, heteronyms = get_dbert_prediction_and_heteronym_list(input_text)

# spacy-style output for the predictions
colors = ["#85DCDF", "#DF85DC", "#DCDF85", "#85ABDF"]
spacy_dict = furigana_to_spacy(dbert_prediction)
label_colors = {
    reading: colors[i % len(colors)]
    for i, reading in enumerate(set([item["label"] for item in spacy_dict["ents"]]))
}
html = spacy.displacy.render(spacy_dict, style="ent", manual=True, options={"colors": label_colors})

if len(spacy_dict["ents"]) > 0:
    st.markdown("**Yomikata** found and disambiguated the following heteronyms:")
    st.write(
        f"{add_border(html)}",
        unsafe_allow_html=True,
    )
else:
    st.markdown("**Yomikata** found no heteronyms in the input text.")

# Dictionary + Yomikata prediction
st.markdown("**Yomikata** can be coupled with a dictionary to get full furigana:")
dictionary = st.radio(
    "It can be coupled with a dictionary",
    ("sudachi", "unidic", "ipadic", "juman"),
    horizontal=True,
    label_visibility="collapsed",
)

dictreader = Dictionary(dictionary)
dictionary_prediction = dictreader.furigana(dbert_prediction)
html = parse_furigana(dictionary_prediction).to_html()
st.write(
    f"{add_border(html)}",
    unsafe_allow_html=True,
)

# Dictionary alone prediction
if len(spacy_dict["ents"]) > 0:
    dictionary_prediction = dictreader.furigana(utils.remove_furigana(input_text))
    html = parse_furigana(dictionary_prediction).to_html()
    st.markdown("Without **Yomikata** disambiguation, the dictionary would yield:")
    st.write(
        f"{add_border(html)}",
        unsafe_allow_html=True,
    )

# Randomize button
if st.button("๐ŸŽฒ Randomize the input sentence"):
    st.session_state.default_sentence = get_random_sentence()
    st.experimental_rerun()

# Stats section
global_accuracy, stats_df = get_stats()

st.subheader(
    f"{len(stats_df)} heteronyms supported, with a global accuracy of {global_accuracy:.0%}"
)

st.dataframe(stats_df)

# Hide the footer
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)