yomikata-demo / app.py
Sam Passaglia
initial commit
9aba307
raw
history blame
5.76 kB
"""app.py
streamlit demo of yomikata"""
import pandas as pd
import spacy
import streamlit as st
from speach import ttlig
from yomikata import utils
from yomikata.dictionary import Dictionary
from yomikata.utils import parse_furigana
from pathlib import Path
@st.cache_data
def add_border(html: str):
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.0rem; display: inline-block">{}</div>"""
html = html.replace("\n", " ")
return WRAPPER.format(html)
def get_random_sentence():
from config.config import TEST_DATA_DIR
df = pd.read_csv(Path(TEST_DATA_DIR, "test_optimized_strict_heteronyms.csv"))
return df.sample(1).iloc[0].sentence
@st.cache_data
def get_dbert_prediction_and_heteronym_list(text):
from yomikata.dbert import dBert
reader = dBert()
return reader.furigana(text), reader.heteronyms
@st.cache_data
def get_stats():
from config import config
from yomikata.utils import load_dict
stats = load_dict(Path(config.STORES_DIR, "dbert/training_performance.json"))
global_accuracy = stats['test']['accuracy']
stats = stats['test']['heteronym_performance']
heteronyms = stats.keys()
accuracy = [stats[heteronym]['accuracy'] for heteronym in heteronyms]
readings = [ "ใ€".join(["{reading} ({correct}/{n})".format(reading=reading, correct=stats[heteronym]['readings'][reading]['found'][reading], n=stats[heteronym]['readings'][reading]['n']) for reading in stats[heteronym]['readings'].keys() if (stats[heteronym]['readings'][reading]['found'][reading] !=0 or reading != '<OTHER>')]) for heteronym in heteronyms ]
#if reading != '<OTHER>'
df = pd.DataFrame({'heteronym': heteronyms, 'accuracy': accuracy, 'readings': readings} )
df = df[df['readings'].str.contains('ใ€')]
df['readings'] = df['readings'].str.replace('<OTHER>', 'Other')
df = df.rename(columns={'readings':'readings (test corr./total)'})
df= df.sort_values('accuracy', ascending=False, ignore_index=True)
df.index += 1
return global_accuracy, df
@st.cache_data
def furigana_to_spacy(text_with_furigana):
tokens = parse_furigana(text_with_furigana)
ents = []
output_text = ""
heteronym_count = 0
for token in tokens.groups:
if isinstance(token, ttlig.RubyFrag):
if heteronym_count != 0:
output_text += ", "
ents.append(
{
"start": len(output_text),
"end": len(output_text) + len(token.text),
"label": token.furi,
}
)
output_text += token.text
heteronym_count += 1
else:
pass
return {
"text": output_text,
"ents": ents,
"title": None,
}
st.title("Yomikata: Disambiguate Japanese Heteronyms with a BERT model")
# Input text box
st.markdown("Input a Japanese sentence:")
if "default_sentence" not in st.session_state:
st.session_state.default_sentence = "ใˆใ€{ไบบ้–“/ใซใ‚“ใ’ใ‚“}ใจใ„ใ†ใ‚‚ใฎใ‹ใ„? {ไบบ้–“/ใซใ‚“ใ’ใ‚“}ใจใ„ใ†ใ‚‚ใฎใฏ{่ง’/ใคใฎ}ใฎ{็”Ÿ/ใฏ}ใˆใชใ„ใ€{็”Ÿ็™ฝ/ใชใพใ˜ใ‚}ใ„{้ก”/ใ‹ใŠ}ใ‚„{ๆ‰‹่ถณ/ใฆใ‚ใ—}ใ‚’ใ—ใŸใ€{ไฝ•/ใชใ‚“}ใจใ‚‚ใ„ใ‚ใ‚Œใš{ๆฐ—ๅ‘ณ/ใใฟ}ใฎ{ๆ‚ช/ใ‚ใ‚‹}ใ„ใ‚‚ใฎใ ใ‚ˆใ€‚"
input_text = st.text_area(
"Input a Japanese sentence:",
utils.remove_furigana(st.session_state.default_sentence),
label_visibility="collapsed",
)
# Yomikata prediction
dbert_prediction, heteronyms = get_dbert_prediction_and_heteronym_list(input_text)
# spacy-style output for the predictions
colors = ["#85DCDF", "#DF85DC", "#DCDF85", "#85ABDF"]
spacy_dict = furigana_to_spacy(dbert_prediction)
label_colors = {
reading: colors[i % len(colors)]
for i, reading in enumerate(set([item["label"] for item in spacy_dict["ents"]]))
}
html = spacy.displacy.render(
spacy_dict, style="ent", manual=True, options={"colors": label_colors}
)
if len(spacy_dict["ents"]) > 0:
st.markdown("**Yomikata** found and disambiguated the following heteronyms:")
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
else:
st.markdown("**Yomikata** found no heteronyms in the input text.")
# Dictionary + Yomikata prediction
st.markdown("**Yomikata** can be coupled with a dictionary to get full furigana:")
dictionary = st.radio(
"It can be coupled with a dictionary",
("sudachi", "unidic", "ipadic", "juman"),
horizontal=True,
label_visibility="collapsed",
)
dictreader = Dictionary(dictionary)
dictionary_prediction = dictreader.furigana(dbert_prediction)
html = parse_furigana(dictionary_prediction).to_html()
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
# Dictionary alone prediction
if len(spacy_dict["ents"]) > 0:
dictionary_prediction = dictreader.furigana(utils.remove_furigana(input_text))
html = parse_furigana(dictionary_prediction).to_html()
st.markdown("Without **Yomikata** disambiguation, the dictionary would yield:")
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
# Randomize button
if st.button("๐ŸŽฒ Randomize the input sentence"):
st.session_state.default_sentence = get_random_sentence()
st.experimental_rerun()
# Stats section
global_accuracy, stats_df = get_stats()
st.subheader(f"{len(stats_df)} heteronyms supported, with a global accuracy of {global_accuracy:.0%}")
st.dataframe(stats_df)
# Hide the footer
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)