File size: 10,738 Bytes
e0bec4f
 
 
 
 
8aa0a12
e0bec4f
 
 
2e8f367
 
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ee34c
 
 
 
 
 
 
 
 
 
 
e0bec4f
8aa0a12
e0bec4f
 
 
 
 
 
e79849f
e0bec4f
 
e79849f
e0bec4f
bcfa275
 
b97502a
e0bec4f
 
 
1efe999
cd2ec5a
e0bec4f
 
03bcdd4
61b4456
cd2ec5a
61b4456
 
7fa502d
6f61340
 
 
 
 
e0bec4f
 
 
 
 
 
 
 
8aa0a12
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bec4f
 
7fa502d
 
8aa0a12
 
 
 
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa0a12
e0bec4f
 
8aa0a12
e0bec4f
 
 
8aa0a12
6ebdb42
8aa0a12
 
cd2ec5a
e0bec4f
8aa0a12
6ebdb42
 
8aa0a12
6ebdb42
 
8aa0a12
6ebdb42
8aa0a12
 
cd2ec5a
6ebdb42
8aa0a12
6ebdb42
 
8aa0a12
6ebdb42
 
 
 
e0bec4f
 
4335878
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
da3c686
4335878
 
 
 
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fe057
e0bec4f
 
 
 
 
 
 
 
 
 
 
cd2ec5a
6f61340
b36c094
8aa0a12
e0bec4f
 
 
6f61340
 
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
4335878
50ee34c
e0bec4f
 
 
 
8aa0a12
4335878
e0bec4f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import requests
import json
import gradio as gr
from datetime import datetime

invoke_url = "https://02u4taf9pf.execute-api.us-west-2.amazonaws.com/prod"
api = invoke_url + '/langchain_processor_qa?query='

# chinese_index = "smart_search_qa_test_0614_wuyue_2"
# chinese_index = "smart_search_qa_demo_0618_cn_3"
chinese_index = "smart_search_qa_demo_0620_cn"
english_index = "smart_search_qa_demo_0618_en_2"

chinese_prompt = """基于以下已知信息,简洁和专业的来回答用户的问题,并告知是依据哪些信息来进行回答的。
   如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
    
            问题: {question}
            =========
            {context}
            =========
            答案:"""

english_prompt = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}

Question: {question}
Answer:"""                                


zh_prompt_template = """
如下三个反括号中是aws的产品文档片段
```
{text}
```
请基于这些文档片段自动生成尽可能多的问题以及对应答案, 尽可能详细全面, 并且遵循如下规则:
1. "aws"需要一直被包含在Question中
2. 答案部分的内容必须为上述aws的产品文档片段的内容摘要
3. 问题部分需要以"Question:"开始
4. 答案部分需要以"Answer:"开始
"""

en_prompt_template = """
Here is one page of aws's product document
```
{text}
```
Please automatically generate FAQs based on these document fragments, with answers that should not exceed 50 words as much as possible, and follow the following rules:
1. 'aws' needs to be included in the question
2. The content of the answer section must be a summary of the content of the above document fragments

The Question and Answer are:
"""

EN_SUMMARIZE_PROMPT_TEMPLATE = """
Here is one page of aws's manual document
```
{text}
```
Please automatically generate as many questions as possible based on this manual document, and follow these rules:
1. "aws" should be contained in every question
2. questions start with "Question:"
3. answers begin with "Answer:"
"""


def get_answer(question,session_id,language,prompt,search_engine,index,top_k,temperature):
    
    if len(question) > 0:
        url = api + question
    else:
        url = api + "hello"
    
    # task='chat'
    # if question.find('电商')>=0 or question.find('开店')>=0 or question.find('亚马逊')>=0:
    #     task = 'qa'
    # url += ('&task='+task)

    task = 'qa'
    url += ('&task='+task)

    if language == "english":
        url += '&language=english'
        url += ('&embedding_endpoint_name=pytorch-inference-all-minilm-l6-v2')
        url += ('&llm_embedding_name=pytorch-inference-vicuna-p3-2x')
    elif language == "chinese-llm-v1":
        url += '&language=chinese'
        url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
        url += ('&llm_embedding_name=pytorch-inference-chatglm-v1')
     
    elif language == "chinese-llm-v2":
        url += '&language=chinese'
        url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
        url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-2x')   

        # if llm_instance == 'p3-8x':
        #     url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-p3-8x')
        # elif llm_instance == 'g4dn-8x':
        #     url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-8x')
    
    if len(session_id) > 0:
        url += ('&session_id='+session_id)
    
        
    if len(prompt) > 0:
        url += ('&prompt='+prompt)

    if search_engine == "OpenSearch":
        url += ('&search_engine=opensearch')
        if len(index) > 0:
            url += ('&index='+index)
        else:
            if language.find("chinese") >= 0 and len(chinese_index) >0:
                url += ('&index='+chinese_index)
            elif language == "english" and len(english_index) >0:
                url += ('&index='+english_index)
    elif search_engine == "Kendra":
        url += ('&search_engine=kendra')
        if len(index) > 0:
            url += ('&kendra_index_id='+index)

    if int(top_k) > 0:
        url += ('&top_k='+str(top_k))
    
    url += ('&temperature='+str(temperature))
    url += ('&cal_qa_relate_score=true')
    url += ('&cal_answer_relate_scores=true')
    url += ('&cal_list_overlap_score=true')

    print("url:",url)

    now1 = datetime.now()#begin time
    response = requests.get(url)
    now2 = datetime.now()#endtime
    request_time = now2-now1
    print("request takes time:",request_time)

    result = response.text
    
    result = json.loads(result)
    print('result:',result)
    
    answer = result['suggestion_answer']
    source_list = []
    if 'source_list' in result.keys():
        source_list = result['source_list']
    
    print("answer:",answer)

    source_str = ""
    for i in range(len(source_list)):
        item = source_list[i]
        print('item:',item)
        _id = "num:" + str(item['id'])
        source = "source:" + item['source']
        score = "score:" + str(item['score'])
        sentence = "sentence:" + item['sentence']
        paragraph = "paragraph:" + item['paragraph']
        source_str += (_id + "      " + source + "      " + score + '\n')
        # source_str += sentence + '\n'
        source_str += paragraph + '\n\n'
    
    confidence = ""
    query_doc_scores = []
    if 'query_doc_scores' in result.keys():
        query_doc_scores =  list(result['query_doc_scores'])
    if len(query_doc_scores) > 0:
        confidence += ("query_doc_scores:" + str(query_doc_scores) + '\n')

    qa_relate_score = 0
    if 'qa_relate_score' in result.keys():
        qa_relate_score =  result['qa_relate_score']
    if float(qa_relate_score) > 0:
        confidence += ("qa_relate_score:" + str(qa_relate_score) + '\n')

    answer_relate_scores = []
    if 'answer_relate_scores' in result.keys():
        answer_relate_scores =  list(result['answer_relate_scores'])
    if len(answer_relate_scores) > 0:
        confidence += ("answer_relate_scores:" + str(answer_relate_scores) + '\n')

    list_overlap_score = 0
    if 'list_overlap_score' in result.keys():
        list_overlap_score =  result['list_overlap_score']
    if float(list_overlap_score) > 0:
        confidence += ("list_overlap_score:" + str(list_overlap_score) + '\n')


    return answer,confidence,source_str,url,request_time
    
    
def get_summarize(texts,language,prompt):

    url = api + texts
    url += '&task=summarize'

    if language == "english":
        url += '&language=english'
        url += ('&embedding_endpoint_name=pytorch-inference-all-minilm-l6-v2')
        url += ('&llm_embedding_name=pytorch-inference-vicuna-v1-1-b')
        # url += ('&prompt='+en_prompt_template)
        
    elif language == "chinese":
        url += '&language=chinese'
        url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
        # url += ('&prompt='+zh_prompt_template)
        url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-2x')
        # if llm_instance == '2x':
        #     url += ('&llm_embedding_name=pytorch-inference-chatglm-v1')
        # elif llm_instance == '8x':
        #     url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-8x')
    
    if len(prompt) > 0:
        url += ('&prompt='+prompt)
    
    print('url:',url)
    response = requests.get(url)
    result = response.text
    result = json.loads(result)
    print('result1:',result)
    
    answer = result['summarize']

    if language == 'english' and answer.find('The Question and Answer are:') > 0:
        answer=answer.split('The Question and Answer are:')[-1].strip()

    return answer

demo = gr.Blocks(title="亚马逊云科技智能问答解决方案指南")
with demo:
    gr.Markdown(
        "# <center>AWS Intelligent Q&A Solution Guide"
    )

    with gr.Tabs():
        with gr.TabItem("Question Answering"):

            with gr.Row():
                with gr.Column():
                    query_textbox = gr.Textbox(label="Query")
                    session_id_textbox = gr.Textbox(label="Session ID")
                    qa_button = gr.Button("Summit")

                    qa_language_radio = gr.Radio(["chinese-llm-v1","chinese-llm-v2", "english"],value="chinese-llm-v1",label="Language")
                    # qa_llm_radio = gr.Radio(["p3-8x", "g4dn-8x"],value="p3-8x",label="Chinese llm instance")
                    qa_prompt_textbox = gr.Textbox(label="Prompt( must include {context} and {question} )",placeholder=chinese_prompt,lines=2)
                    qa_search_engine_radio = gr.Radio(["OpenSearch","Kendra"],value="OpenSearch",label="Search engine")
                    qa_index_textbox = gr.Textbox(label="Index")
                    qa_top_k_slider = gr.Slider(label="Top_k of source text to LLM",value=1, minimum=1, maximum=4, step=1)
                    
                    temperature_slider = gr.Slider(label="temperature for LLM",value=0.01, minimum=0.0, maximum=1, step=0.01)

                    #language_radio.change(fn=change_prompt, inputs=language_radio, outputs=prompt_textbox)
                    
                with gr.Column():
                    qa_output = [gr.outputs.Textbox(label="Answer"), gr.outputs.Textbox(label="Confidence"), gr.outputs.Textbox(label="Source"), gr.outputs.Textbox(label="Url"), gr.outputs.Textbox(label="Request time")]
                                

        with gr.TabItem("Summarize"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(label="Input texts",lines=4)
                    summarize_button = gr.Button("Summit")
                    sm_language_radio = gr.Radio(["chinese", "english"],value="chinese",label="Language")
                    # sm_llm_radio = gr.Radio(["2x", "8x"],value="2x",label="Chinese llm instance")
                    sm_prompt_textbox = gr.Textbox(label="Prompt",lines=4, placeholder=EN_SUMMARIZE_PROMPT_TEMPLATE)
                with gr.Column():
                    text_output = gr.Textbox()
            
       
    qa_button.click(get_answer, inputs=[query_textbox,session_id_textbox,qa_language_radio,qa_prompt_textbox,qa_search_engine_radio,qa_index_textbox,qa_top_k_slider,temperature_slider], outputs=qa_output)
    summarize_button.click(get_summarize, inputs=[text_input,sm_language_radio,sm_prompt_textbox], outputs=text_output)

demo.launch()
# smart_qa.launch(share=True)