File size: 10,738 Bytes
e0bec4f 8aa0a12 e0bec4f 2e8f367 e0bec4f 50ee34c e0bec4f 8aa0a12 e0bec4f e79849f e0bec4f e79849f e0bec4f bcfa275 b97502a e0bec4f 1efe999 cd2ec5a e0bec4f 03bcdd4 61b4456 cd2ec5a 61b4456 7fa502d 6f61340 e0bec4f 8aa0a12 e0bec4f 7fa502d 8aa0a12 e0bec4f 8aa0a12 e0bec4f 8aa0a12 e0bec4f 8aa0a12 6ebdb42 8aa0a12 cd2ec5a e0bec4f 8aa0a12 6ebdb42 8aa0a12 6ebdb42 8aa0a12 6ebdb42 8aa0a12 cd2ec5a 6ebdb42 8aa0a12 6ebdb42 8aa0a12 6ebdb42 e0bec4f 4335878 e0bec4f da3c686 4335878 e0bec4f 94fe057 e0bec4f cd2ec5a 6f61340 b36c094 8aa0a12 e0bec4f 6f61340 e0bec4f 4335878 50ee34c e0bec4f 8aa0a12 4335878 e0bec4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import requests
import json
import gradio as gr
from datetime import datetime
invoke_url = "https://02u4taf9pf.execute-api.us-west-2.amazonaws.com/prod"
api = invoke_url + '/langchain_processor_qa?query='
# chinese_index = "smart_search_qa_test_0614_wuyue_2"
# chinese_index = "smart_search_qa_demo_0618_cn_3"
chinese_index = "smart_search_qa_demo_0620_cn"
english_index = "smart_search_qa_demo_0618_en_2"
chinese_prompt = """基于以下已知信息,简洁和专业的来回答用户的问题,并告知是依据哪些信息来进行回答的。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
问题: {question}
=========
{context}
=========
答案:"""
english_prompt = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer:"""
zh_prompt_template = """
如下三个反括号中是aws的产品文档片段
```
{text}
```
请基于这些文档片段自动生成尽可能多的问题以及对应答案, 尽可能详细全面, 并且遵循如下规则:
1. "aws"需要一直被包含在Question中
2. 答案部分的内容必须为上述aws的产品文档片段的内容摘要
3. 问题部分需要以"Question:"开始
4. 答案部分需要以"Answer:"开始
"""
en_prompt_template = """
Here is one page of aws's product document
```
{text}
```
Please automatically generate FAQs based on these document fragments, with answers that should not exceed 50 words as much as possible, and follow the following rules:
1. 'aws' needs to be included in the question
2. The content of the answer section must be a summary of the content of the above document fragments
The Question and Answer are:
"""
EN_SUMMARIZE_PROMPT_TEMPLATE = """
Here is one page of aws's manual document
```
{text}
```
Please automatically generate as many questions as possible based on this manual document, and follow these rules:
1. "aws" should be contained in every question
2. questions start with "Question:"
3. answers begin with "Answer:"
"""
def get_answer(question,session_id,language,prompt,search_engine,index,top_k,temperature):
if len(question) > 0:
url = api + question
else:
url = api + "hello"
# task='chat'
# if question.find('电商')>=0 or question.find('开店')>=0 or question.find('亚马逊')>=0:
# task = 'qa'
# url += ('&task='+task)
task = 'qa'
url += ('&task='+task)
if language == "english":
url += '&language=english'
url += ('&embedding_endpoint_name=pytorch-inference-all-minilm-l6-v2')
url += ('&llm_embedding_name=pytorch-inference-vicuna-p3-2x')
elif language == "chinese-llm-v1":
url += '&language=chinese'
url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
url += ('&llm_embedding_name=pytorch-inference-chatglm-v1')
elif language == "chinese-llm-v2":
url += '&language=chinese'
url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-2x')
# if llm_instance == 'p3-8x':
# url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-p3-8x')
# elif llm_instance == 'g4dn-8x':
# url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-8x')
if len(session_id) > 0:
url += ('&session_id='+session_id)
if len(prompt) > 0:
url += ('&prompt='+prompt)
if search_engine == "OpenSearch":
url += ('&search_engine=opensearch')
if len(index) > 0:
url += ('&index='+index)
else:
if language.find("chinese") >= 0 and len(chinese_index) >0:
url += ('&index='+chinese_index)
elif language == "english" and len(english_index) >0:
url += ('&index='+english_index)
elif search_engine == "Kendra":
url += ('&search_engine=kendra')
if len(index) > 0:
url += ('&kendra_index_id='+index)
if int(top_k) > 0:
url += ('&top_k='+str(top_k))
url += ('&temperature='+str(temperature))
url += ('&cal_qa_relate_score=true')
url += ('&cal_answer_relate_scores=true')
url += ('&cal_list_overlap_score=true')
print("url:",url)
now1 = datetime.now()#begin time
response = requests.get(url)
now2 = datetime.now()#endtime
request_time = now2-now1
print("request takes time:",request_time)
result = response.text
result = json.loads(result)
print('result:',result)
answer = result['suggestion_answer']
source_list = []
if 'source_list' in result.keys():
source_list = result['source_list']
print("answer:",answer)
source_str = ""
for i in range(len(source_list)):
item = source_list[i]
print('item:',item)
_id = "num:" + str(item['id'])
source = "source:" + item['source']
score = "score:" + str(item['score'])
sentence = "sentence:" + item['sentence']
paragraph = "paragraph:" + item['paragraph']
source_str += (_id + " " + source + " " + score + '\n')
# source_str += sentence + '\n'
source_str += paragraph + '\n\n'
confidence = ""
query_doc_scores = []
if 'query_doc_scores' in result.keys():
query_doc_scores = list(result['query_doc_scores'])
if len(query_doc_scores) > 0:
confidence += ("query_doc_scores:" + str(query_doc_scores) + '\n')
qa_relate_score = 0
if 'qa_relate_score' in result.keys():
qa_relate_score = result['qa_relate_score']
if float(qa_relate_score) > 0:
confidence += ("qa_relate_score:" + str(qa_relate_score) + '\n')
answer_relate_scores = []
if 'answer_relate_scores' in result.keys():
answer_relate_scores = list(result['answer_relate_scores'])
if len(answer_relate_scores) > 0:
confidence += ("answer_relate_scores:" + str(answer_relate_scores) + '\n')
list_overlap_score = 0
if 'list_overlap_score' in result.keys():
list_overlap_score = result['list_overlap_score']
if float(list_overlap_score) > 0:
confidence += ("list_overlap_score:" + str(list_overlap_score) + '\n')
return answer,confidence,source_str,url,request_time
def get_summarize(texts,language,prompt):
url = api + texts
url += '&task=summarize'
if language == "english":
url += '&language=english'
url += ('&embedding_endpoint_name=pytorch-inference-all-minilm-l6-v2')
url += ('&llm_embedding_name=pytorch-inference-vicuna-v1-1-b')
# url += ('&prompt='+en_prompt_template)
elif language == "chinese":
url += '&language=chinese'
url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
# url += ('&prompt='+zh_prompt_template)
url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-2x')
# if llm_instance == '2x':
# url += ('&llm_embedding_name=pytorch-inference-chatglm-v1')
# elif llm_instance == '8x':
# url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-8x')
if len(prompt) > 0:
url += ('&prompt='+prompt)
print('url:',url)
response = requests.get(url)
result = response.text
result = json.loads(result)
print('result1:',result)
answer = result['summarize']
if language == 'english' and answer.find('The Question and Answer are:') > 0:
answer=answer.split('The Question and Answer are:')[-1].strip()
return answer
demo = gr.Blocks(title="亚马逊云科技智能问答解决方案指南")
with demo:
gr.Markdown(
"# <center>AWS Intelligent Q&A Solution Guide"
)
with gr.Tabs():
with gr.TabItem("Question Answering"):
with gr.Row():
with gr.Column():
query_textbox = gr.Textbox(label="Query")
session_id_textbox = gr.Textbox(label="Session ID")
qa_button = gr.Button("Summit")
qa_language_radio = gr.Radio(["chinese-llm-v1","chinese-llm-v2", "english"],value="chinese-llm-v1",label="Language")
# qa_llm_radio = gr.Radio(["p3-8x", "g4dn-8x"],value="p3-8x",label="Chinese llm instance")
qa_prompt_textbox = gr.Textbox(label="Prompt( must include {context} and {question} )",placeholder=chinese_prompt,lines=2)
qa_search_engine_radio = gr.Radio(["OpenSearch","Kendra"],value="OpenSearch",label="Search engine")
qa_index_textbox = gr.Textbox(label="Index")
qa_top_k_slider = gr.Slider(label="Top_k of source text to LLM",value=1, minimum=1, maximum=4, step=1)
temperature_slider = gr.Slider(label="temperature for LLM",value=0.01, minimum=0.0, maximum=1, step=0.01)
#language_radio.change(fn=change_prompt, inputs=language_radio, outputs=prompt_textbox)
with gr.Column():
qa_output = [gr.outputs.Textbox(label="Answer"), gr.outputs.Textbox(label="Confidence"), gr.outputs.Textbox(label="Source"), gr.outputs.Textbox(label="Url"), gr.outputs.Textbox(label="Request time")]
with gr.TabItem("Summarize"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Input texts",lines=4)
summarize_button = gr.Button("Summit")
sm_language_radio = gr.Radio(["chinese", "english"],value="chinese",label="Language")
# sm_llm_radio = gr.Radio(["2x", "8x"],value="2x",label="Chinese llm instance")
sm_prompt_textbox = gr.Textbox(label="Prompt",lines=4, placeholder=EN_SUMMARIZE_PROMPT_TEMPLATE)
with gr.Column():
text_output = gr.Textbox()
qa_button.click(get_answer, inputs=[query_textbox,session_id_textbox,qa_language_radio,qa_prompt_textbox,qa_search_engine_radio,qa_index_textbox,qa_top_k_slider,temperature_slider], outputs=qa_output)
summarize_button.click(get_summarize, inputs=[text_input,sm_language_radio,sm_prompt_textbox], outputs=text_output)
demo.launch()
# smart_qa.launch(share=True)
|