File size: 10,789 Bytes
e0bec4f
 
 
 
 
ccd8ece
e0bec4f
 
 
2e8f367
 
e0bec4f
 
8119e89
 
 
 
 
 
 
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ee34c
 
 
 
 
 
 
 
 
 
 
e0bec4f
4503d3c
e0bec4f
c7be2db
 
6f0bd52
e0bec4f
 
 
 
 
4503d3c
 
 
 
 
bcfa275
b97502a
e0bec4f
 
 
1efe999
9c4d272
e0bec4f
fcb7ecd
 
 
61b4456
9c4d272
 
fcb7ecd
 
 
e0bec4f
 
 
 
 
 
 
 
8aa0a12
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bec4f
 
63510fe
 
5baaa1d
8aa0a12
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa0a12
e0bec4f
 
8aa0a12
e0bec4f
 
 
470a823
 
 
 
 
 
 
 
 
1536d24
470a823
 
 
 
 
1536d24
470a823
 
 
 
 
1536d24
470a823
6ebdb42
 
 
e0bec4f
 
4335878
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
da3c686
4335878
 
 
 
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fe057
e0bec4f
 
 
 
 
 
 
4503d3c
e0bec4f
 
 
 
9c4d272
6f61340
b36c094
8aa0a12
08b679c
e0bec4f
 
28a9da3
6f61340
e517e2b
470a823
e0bec4f
 
 
 
 
 
 
 
 
 
 
 
4335878
50ee34c
e0bec4f
 
 
 
4503d3c
4335878
e0bec4f
 
28a9da3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import requests
import json
import gradio as gr
from datetime import datetime

invoke_url = "https://3e2paa86c4.execute-api.us-west-2.amazonaws.com/prod"
api = invoke_url + '/langchain_processor_qa?query='

# chinese_index = "smart_search_qa_test_0614_wuyue_2"
# chinese_index = "smart_search_qa_demo_0618_cn_3"
chinese_index = "smart_search_qa_demo_0620_cn"
english_index = "smart_search_qa_demo_0618_en_2"

chinese_prompt = """给定一个长文档和一个问题的以下提取部分,如果你不知道答案,就说你不知道。不要试图编造答案。用中文回答。

问题: {question}
=========
{context}
=========
答案:"""

english_prompt = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}

Question: {question}
Answer:"""                                


zh_prompt_template = """
如下三个反括号中是aws的产品文档片段
```
{text}
```
请基于这些文档片段自动生成尽可能多的问题以及对应答案, 尽可能详细全面, 并且遵循如下规则:
1. "aws"需要一直被包含在Question中
2. 答案部分的内容必须为上述aws的产品文档片段的内容摘要
3. 问题部分需要以"Question:"开始
4. 答案部分需要以"Answer:"开始
"""

en_prompt_template = """
Here is one page of aws's product document
```
{text}
```
Please automatically generate FAQs based on these document fragments, with answers that should not exceed 50 words as much as possible, and follow the following rules:
1. 'aws' needs to be included in the question
2. The content of the answer section must be a summary of the content of the above document fragments

The Question and Answer are:
"""

EN_SUMMARIZE_PROMPT_TEMPLATE = """
Here is one page of aws's manual document
```
{text}
```
Please automatically generate as many questions as possible based on this manual document, and follow these rules:
1. "aws" should be contained in every question
2. questions start with "Question:"
3. answers begin with "Answer:"
"""


def get_answer(task_type,question,session_id,language,prompt,search_engine,index,top_k,score_type_checklist):
    
    question=question.replace('AWS','亚马逊云科技').replace('aws','亚马逊云科技').replace('Aws','亚马逊云科技')
    print('question:',question)

    if len(question) > 0:
        url = api + question
    else:
        url = api + "hello"
    
    #task type: qa,chat
    if task_type == "Knowledge base Q&A":
        task = 'qa'
    else:
        task = 'chat'
    url += ('&task='+task)

    if language == "english":
        url += '&language=english'
        url += ('&embedding_endpoint_name=pytorch-inference-all-minilm-l6-v2')
        url += ('&llm_embedding_name=pytorch-inference-vicuna-p3-2x')
    elif language == "chinese":
        url += '&language=chinese'
        # url += ('&embedding_endpoint_name=huggingface-inference-m3e-base')
        url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
        url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-4x')
     
    elif language == "chinese-tc":
        url += '&language=chinese-tc'
        # url += ('&embedding_endpoint_name=huggingface-inference-m3e-base')
        url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
        url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-4x')
    
    if len(session_id) > 0:
        url += ('&session_id='+session_id)
    
        
    if len(prompt) > 0:
        url += ('&prompt='+prompt)

    if search_engine == "OpenSearch":
        url += ('&search_engine=opensearch')
        if len(index) > 0:
            url += ('&index='+index)
        else:
            if language.find("chinese") >= 0 and len(chinese_index) >0:
                url += ('&index='+chinese_index)
            elif language == "english" and len(english_index) >0:
                url += ('&index='+english_index)
    elif search_engine == "Kendra":
        url += ('&search_engine=kendra')
        if len(index) > 0:
            url += ('&kendra_index_id='+index)

    if int(top_k) > 0:
        url += ('&top_k='+str(top_k))

    for score_type in score_type_checklist:
        url += ('&cal_' + score_type +'=true')

    print("url:",url)

    now1 = datetime.now()#begin time
    response = requests.get(url)
    now2 = datetime.now()#endtime
    request_time = now2-now1
    print("request takes time:",request_time)

    result = response.text
    
    result = json.loads(result)
    print('result:',result)
    
    answer = result['suggestion_answer']
    source_list = []
    if 'source_list' in result.keys():
        source_list = result['source_list']
    
    print("answer:",answer)

    source_str = ""
    for i in range(len(source_list)):
        item = source_list[i]
        print('item:',item)
        _id = "num:" + str(item['id'])
        source = "source:" + item['source']
        score = "score:" + str(item['score'])
        sentence = "sentence:" + item['sentence']
        paragraph = "paragraph:" + item['paragraph']
        source_str += (_id + "      " + source + "      " + score + '\n')
        # source_str += sentence + '\n'
        source_str += paragraph + '\n\n'
    
    confidence = ""
    query_docs_score = -1
    if 'query_docs_score' in result.keys():
        query_docs_score =  float(result['query_docs_score'])
    if query_docs_score >= 0:
        confidence += ("query_docs_score:" + str(query_docs_score) + '\n')

    query_answer_score = -1
    if 'query_answer_score' in result.keys():
        query_answer_score =  float(result['query_answer_score'])
    if query_answer_score >= 0:
        confidence += ("query_answer_score:" + str(query_answer_score) + '\n')

    answer_docs_score = -1
    if 'answer_docs_score' in result.keys():
        answer_docs_score =  float(result['answer_docs_score'])
    if answer_docs_score >= 0:
        confidence += ("answer_docs_score:" + str(answer_docs_score) + '\n')

    docs_list_overlap_score = -1
    if 'docs_list_overlap_score' in result.keys():
        docs_list_overlap_score =  float(result['docs_list_overlap_score'])
    if docs_list_overlap_score >= 0:
        confidence += ("docs_list_overlap_score:" + str(docs_list_overlap_score) + '\n')


    return answer,confidence,source_str,url,request_time
    
    
def get_summarize(texts,language,prompt):

    url = api + texts
    url += '&task=summarize'

    if language == "english":
        url += '&language=english'
        url += ('&embedding_endpoint_name=pytorch-inference-all-minilm-l6-v2')
        url += ('&llm_embedding_name=pytorch-inference-vicuna-v1-1-b')
        # url += ('&prompt='+en_prompt_template)
        
    elif language == "chinese":
        url += '&language=chinese'
        url += ('&embedding_endpoint_name=huggingface-inference-text2vec-base-chinese-v1')
        # url += ('&prompt='+zh_prompt_template)
        url += ('&llm_embedding_name=pytorch-inference-chatglm2-g5-2x')
        # if llm_instance == '2x':
        #     url += ('&llm_embedding_name=pytorch-inference-chatglm-v1')
        # elif llm_instance == '8x':
        #     url += ('&llm_embedding_name=pytorch-inference-chatglm-v1-8x')
    
    if len(prompt) > 0:
        url += ('&prompt='+prompt)
    
    print('url:',url)
    response = requests.get(url)
    result = response.text
    result = json.loads(result)
    print('result1:',result)
    
    answer = result['summarize']

    if language == 'english' and answer.find('The Question and Answer are:') > 0:
        answer=answer.split('The Question and Answer are:')[-1].strip()

    return answer

demo = gr.Blocks(title="亚马逊云科技智能问答解决方案指南")
with demo:
    gr.Markdown(
        "# <center>AWS Intelligent Q&A Solution Guide"
    )

    with gr.Tabs():
        with gr.TabItem("Question Answering"):

            with gr.Row():
                with gr.Column():
                    qa_task_radio = gr.Radio(["Knowledge base Q&A","Chat"],value="Knowledge base Q&A",label="Task")
                    query_textbox = gr.Textbox(label="Query")
                    session_id_textbox = gr.Textbox(label="Session ID")
                    qa_button = gr.Button("Summit")

                    qa_language_radio = gr.Radio(["chinese","chinese-tc", "english"],value="chinese",label="Language")
                    # qa_llm_radio = gr.Radio(["p3-8x", "g4dn-8x"],value="p3-8x",label="Chinese llm instance")
                    qa_prompt_textbox = gr.Textbox(label="Prompt( must include {context} and {question} )",placeholder=chinese_prompt,lines=2)
                    qa_search_engine_radio = gr.Radio(["OpenSearch","Kendra"],value="OpenSearch",label="Search engine")
                    qa_index_textbox = gr.Textbox(label="OpenSearch index OR Kendra index id")
                    qa_top_k_slider = gr.Slider(label="Top_k of source text to LLM",value=1, minimum=1, maximum=4, step=1)
                    
                    # temperature_slider = gr.Slider(label="temperature for LLM",value=0.01, minimum=0.0, maximum=1, step=0.01)

                    score_type_checklist = gr.CheckboxGroup(["query_answer_score", "answer_docs_score","docs_list_overlap_score"],value=[],label="Confidence score type")

                    #language_radio.change(fn=change_prompt, inputs=language_radio, outputs=prompt_textbox)
                    
                with gr.Column():
                    qa_output = [gr.outputs.Textbox(label="Answer"), gr.outputs.Textbox(label="Confidence"), gr.outputs.Textbox(label="Source"), gr.outputs.Textbox(label="Url"), gr.outputs.Textbox(label="Request time")]
                                

        with gr.TabItem("Summarize"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(label="Input texts",lines=4)
                    summarize_button = gr.Button("Summit")
                    sm_language_radio = gr.Radio(["chinese", "english"],value="chinese",label="Language")
                    # sm_llm_radio = gr.Radio(["2x", "8x"],value="2x",label="Chinese llm instance")
                    sm_prompt_textbox = gr.Textbox(label="Prompt",lines=4, placeholder=EN_SUMMARIZE_PROMPT_TEMPLATE)
                with gr.Column():
                    text_output = gr.Textbox()
            
       
    qa_button.click(get_answer, inputs=[qa_task_radio,query_textbox,session_id_textbox,qa_language_radio,qa_prompt_textbox,qa_search_engine_radio,qa_index_textbox,qa_top_k_slider,score_type_checklist], outputs=qa_output)
    summarize_button.click(get_summarize, inputs=[text_input,sm_language_radio,sm_prompt_textbox], outputs=text_output)

demo.launch()
# demo.launch(share=True)