File size: 15,709 Bytes
e0bec4f
 
 
 
 
3e8c841
3f6b6e1
 
8c4de87
e0bec4f
3e8c841
 
9d2b618
8c4de87
3e8c841
 
8c4de87
9d2b618
3e8c841
 
9d2b618
8119e89
8c4de87
 
 
cd268c4
f916137
3e8c841
 
 
 
 
 
 
 
 
e0bec4f
 
 
 
 
 
 
 
3e8c841
e0bec4f
 
3e8c841
 
 
e0bec4f
 
3e8c841
 
 
 
 
 
e0bec4f
 
3e8c841
 
 
 
50ee34c
 
3e8c841
 
e0bec4f
3e8c841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c4de87
 
 
 
 
 
3e8c841
 
8c4de87
3e8c841
8c4de87
e0bec4f
c7be2db
 
6f0bd52
e0bec4f
 
 
 
8c4de87
 
4503d3c
 
 
 
 
bcfa275
b97502a
f916137
 
 
e0bec4f
 
8c4de87
 
 
 
 
 
 
9c4d272
e0bec4f
8c4de87
 
 
 
 
61b4456
9c4d272
 
8c4de87
 
 
 
 
e0bec4f
8c4de87
 
e0bec4f
8c4de87
 
 
 
 
 
 
 
 
3e8c841
e0bec4f
 
8c4de87
3e8c841
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bec4f
8c4de87
 
8aa0a12
 
 
 
 
 
 
3e8c841
8c4de87
 
8aa0a12
 
 
8c4de87
 
 
 
63510fe
8c4de87
 
 
 
 
 
 
 
3e8c841
63510fe
8c4de87
 
 
 
8aa0a12
e0bec4f
 
 
 
 
 
 
 
 
8c4de87
e0bec4f
 
 
 
8c4de87
e0bec4f
35e15ba
85c2aae
e0bec4f
 
35e15ba
e0bec4f
 
03238b7
 
e0bec4f
 
 
 
3e8c841
 
 
 
 
 
 
 
 
03238b7
 
 
 
 
 
8aa0a12
e0bec4f
03238b7
 
8aa0a12
e0bec4f
 
 
69b8a32
9fe158b
03238b7
470a823
 
8c4de87
 
1536d24
470a823
 
 
69b8a32
9fe158b
03238b7
6ebdb42
 
e0bec4f
 
8c4de87
e0bec4f
 
 
8c4de87
e0bec4f
 
 
8c4de87
 
e0bec4f
 
 
8c4de87
 
9d2b618
8c4de87
 
 
 
9d2b618
3e8c841
e0bec4f
 
3e8c841
 
 
 
 
e0bec4f
 
 
 
 
 
 
 
 
3e8c841
 
e0bec4f
 
 
3e8c841
e0bec4f
 
94fe057
e0bec4f
 
 
 
 
 
 
4503d3c
e0bec4f
8c4de87
e0bec4f
 
9c4d272
8c4de87
b36c094
8c4de87
08b679c
3e8c841
e0bec4f
8c4de87
 
 
 
 
 
 
 
 
6f61340
e0bec4f
 
 
 
 
 
 
 
 
 
8c4de87
3e8c841
e0bec4f
 
 
8c4de87
 
 
e0bec4f
7091eea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import requests
import json
import gradio as gr
from datetime import datetime

#Fill in your correct configuration
invoke_url = 'https://2ds1b4fk9b.execute-api.us-west-2.amazonaws.com/prod'
bedrock_url = 'https://1n8iqpumdj.execute-api.us-west-2.amazonaws.com/prod'


chinese_index = "digitimes_test_1005_title"
english_index = "chinese_bge_test_0916"


cn_embedding_endpoint = 'huggingface-inference-eb-zh'
cn_llm_endpoint = 'pytorch-inference-chatglm2-g5-4x'
baichuan_llm_endpoint = 'pytorch-inference-llm-baichuan-13b-4bits'

en_embedding_endpoint = 'pytorch-inference-all-minilm-l6-v2'
en_llm_endpoint = 'pytorch-inference-chatglm2-g5-4x'


llama2_llm_endpoint = 'meta-textgeneration-llama-2-7b-f-2023-07-19-06-07-05-430'


responseIfNoDocsFound = ''

#Modify the default prompt as needed
chinese_prompt = """基于以下已知信息,简洁和专业的来回答用户的问题,并告知是依据哪些信息来进行回答的。
   如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
    
            问题: {question}
            =========
            {context}
            =========
            答案:"""

english_prompt = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}

Question: {question}
Answer:"""                                


chinses_summarize_prompt="""请根据访客与客服的通话记录,写一段访客提出问题的摘要,突出显示与亚马逊云服务相关的要点, 摘要不需要有客服的相关内容:
{text}

摘要是:"""

english_summarize_prompt="""Based on the call records between the visitor and the customer service, write a summary of the visitor's questions, highlighting the key points related to Amazon Web Services, and the summary does not need to have customer service-related content:
{text}

The summary is:"""

claude_chat_prompt_cn="""
Human: 请根据 {history},回答:{human_input}

Assistant:
"""

claude_chat_prompt_cn_tc="""
Human: 請根據 {history},使用繁體中文回答:{human_input}

Assistant:
"""

claude_chat_prompt_english="""
Human: Based on {history}, answer the question:{human_input}

Assistant:
"""



claude_rag_prompt_cn = """
Human: 基于以下已知信息,简洁和专业的来回答用户的问题,如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
    
            问题: {question}
            =========
            {context}
            =========
            Assistant:
"""

claude_rag_prompt_cn_tc = """
Human: 基於以下已知信息,簡潔和專業的來回答用戶的問題,如果無法從中得到答案,請說 "根據已知信息無法回答該問題" 或 "沒有提供足夠的相關信息",不允許在答案中添加編造成分,答案請使用繁體中文回答
    
            問題: {question}
            =========
            {context}
            =========
            Assistant:
"""

claude_rag_prompt_english = """
Human: Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}

Question: {question}
Assistant:
"""       

CHINESE_ENHANCED_SEARCH_PROMPT_TEMPLATE = """You are an AI assistant whose task is to help users express their questions more clearly for easier article retrieval. If the user's question is already clear, you can keep the original question. If the question is still unclear, please optimize and clarify it based on the following user input. Answer in TRADITIONAL CHINESE and without punctuation.

Original question: {text}

Optimized question:"""


api = invoke_url + '/langchain_processor_qa?query='
bedrock_url += '/bedrock?'

def get_answer(task_type,question,sessionId,language,modelType,prompt,searchEngine,index,searchMethod,vecTopK,txtTopK,vecDocsScoreThresholds,txtDocsScoreThresholds,score_type_checklist):
    
    question=question.replace('AWS','亚马逊云科技').replace('aws','亚马逊云科技').replace('Aws','亚马逊云科技')
    print('question:',question)

    if len(question) > 0:
        url = api + question
    else:
        url = api + "hello"
    
    url += '&requestType=https'
    #task type: qa,chat
    if task_type == "Knowledge base Q&A":
        task = 'qa'
    else:
        task = 'chat'
    url += ('&task='+task)

    if len(responseIfNoDocsFound) > 0:
        url += ('&responseIfNoDocsFound='+responseIfNoDocsFound)

    if language == "english":
        url += '&language=english'
        url += ('&embeddingEndpoint='+en_embedding_endpoint)
        if modelType == "llama2(english)":
            url += ('&sagemakerEndpoint='+llama2_llm_endpoint)
        elif modelType == "baichuan2":
            url += ('&sagemakerEndpoint='+baichuan_llm_endpoint)
        else:
            url += ('&sagemakerEndpoint='+en_llm_endpoint)
    elif language == "chinese":
        url += '&language=chinese'
        url += ('&embeddingEndpoint='+cn_embedding_endpoint)
        if modelType == "baichuan2":
            url += ('&sagemakerEndpoint='+baichuan_llm_endpoint)
        else:
            url += ('&sagemakerEndpoint='+en_llm_endpoint)
     
    elif language == "chinese-tc":
        url += '&language=chinese-tc'
        url += ('&embeddingEndpoint='+cn_embedding_endpoint)
        if modelType == "baichuan2":
            url += ('&sagemakerEndpoint='+baichuan_llm_endpoint)
        else:
            url += ('&sagemakerEndpoint='+en_llm_endpoint)
    
    if len(sessionId) > 0:
        url += ('&sessionId='+sessionId)
    
    if modelType == "claude2_api":
        url += ('&modelType=bedrock_api')
        url += ('&urlOrApiKey='+bedrock_url)
        url += ('&modelName=anthropic.claude-v2')
    elif modelType == "claude2":
        url += ('&modelType=bedrock')
        url += ('&modelName=anthropic.claude-v2')
    elif modelType == "llama2(english)":
        url += ('&modelType=llama2')

    if len(prompt) > 0:
        url += ('&prompt='+prompt)
    elif modelType == "claude2":
        if task_type == "Knowledge base Q&A":
            if language == "english":
                url += ('&prompt='+claude_rag_prompt_english)
            elif language == "chinese":
                url += ('&prompt='+claude_rag_prompt_cn)
            elif language == "chinese-tc":
                url += ('&prompt='+claude_rag_prompt_cn_tc)
        else:
            if language == "english":
                url += ('&prompt='+claude_chat_prompt_english)
            elif language == "chinese":
                url += ('&prompt='+claude_chat_prompt_cn)
            elif language == "chinese-tc":
                url += ('&prompt='+claude_chat_prompt_cn_tc)

    if searchEngine == "OpenSearch":
        url += ('&searchEngine=opensearch')
        if len(index) > 0:
            url += ('&index='+index)
        else:
            if language.find("chinese") >= 0 and len(chinese_index) >0:
                url += ('&index='+chinese_index)
            elif language == "english" and len(english_index) >0:
                url += ('&index='+english_index)

    elif searchEngine == "Kendra":
        url += ('&searchEngine=kendra')
        if len(index) > 0:
            url += ('&kendra_index_id='+index)

    if int(vecTopK) > 0:
        url += ('&topK='+str(vecTopK))

    url += ('&searchMethod='+searchMethod)

    if int(txtTopK) > 0:
        url += ('&txtDocsNum='+str(txtTopK))

    if float(vecDocsScoreThresholds) > 0:
        url += ('&vecDocsScoreThresholds='+str(vecDocsScoreThresholds))

    if float(txtDocsScoreThresholds) > 0:
        url += ('&txtDocsScoreThresholds='+str(txtDocsScoreThresholds))

    for score_type in score_type_checklist:
        if score_type == "query_answer_score":
            url += ('&isCheckedScoreQA=true')
        elif score_type == "answer_docs_score":
            url += ('&isCheckedScoreAD=true')

    print("url:",url)

    now1 = datetime.now()#begin time
    response = requests.get(url)
    now2 = datetime.now()#endtime
    request_time = now2-now1
    print("request takes time:",request_time)

    result = response.text
    print('result0:',result)
    
    result = json.loads(result)
    print('result:',result)
    
    answer = result['text']
    source_list = []
    if 'sourceData' in result.keys():
        source_list = result['sourceData']
    
    print("answer:",answer)
    print('source_list:',source_list)

    source_str = ""
    query_docs_score_list = []
    answer_docs_score_list = []
    for i in range(len(source_list)):
        item = source_list[i]
        print('item:',item)
        _id = "num:" + str(item['id'])
        try:
            source = ''
            if 'source' in item.keys():
                source = "source:" + item['source']
            elif 'title' in item.keys():
                source = "source:" + item['title']
        except KeyError:
            source ="source:unknown"
            print("KeyError:source file not found")
        qd_score = "qd score:" + str(item['scoreQueryDoc'])
        query_docs_score_list.append(item['scoreQueryDoc'])

        ad_score = "ad score:" + str(item['scoreAnswerDoc'])
        answer_docs_score_list.append(item['scoreAnswerDoc'])

        sentence = "sentence:" + item['sentence']
        paragraph = "paragraph:" + item['paragraph']

        source_str += (_id + "      " + source + "      " + qd_score + '\n')
        # source_str += sentence + '\n'
        source_str += paragraph + '\n\n'
    
    confidence = ""
    print('query_docs_score_list len:',len(list(query_docs_score_list)),str(query_docs_score_list))
    if len(list(query_docs_score_list)) > 0 and float(query_docs_score_list[0]) > 0:
        confidence += ("query_docs_score:" + str(query_docs_score_list) + '\n')

    query_answer_score = -1
    if 'scoreQueryAnswer' in result.keys():
        query_answer_score =  float(result['scoreQueryAnswer'])
    if query_answer_score >= 0:
        confidence += ("query_answer_score:" + str(query_answer_score) + '\n')

    answer_docs_score = -1
    print('answer_docs_score_list len:',len(list(answer_docs_score_list)),str(answer_docs_score_list))
    if len(list(answer_docs_score_list)) > 0 and float(answer_docs_score_list[0]) > 0:
        confidence += ("answer_docs_score:" + str(answer_docs_score_list) + '\n')

    return answer,confidence,source_str,url,request_time
    
    
def get_summarize(texts,language,modelType,prompt):

    url = api + texts
    url += '&task=summarize'
    url += '&requestType=https'

    if language == "english":
        url += '&language=english'
        url += ('&embeddingEndpoint='+en_embedding_endpoint)
        url += ('&sagemakerEndpoint='+en_llm_endpoint)
        
    elif language == "chinese":
        url += '&language=chinese'
        url += ('&embeddingEndpoint='+cn_embedding_endpoint)
        url += ('&sagemakerEndpoint='+cn_llm_endpoint)

    if modelType == "claude2":
        url += ('&modelType=bedrock')
        url += ('&urlOrApiKey='+bedrock_url)
        url += ('&modelName=anthropic.claude-v2')


    if len(prompt) > 0:
        url += ('&prompt='+prompt)
    else:
        if language == "english":
            url += ('&prompt='+english_summarize_prompt)
        elif language == "chinese":
            url += ('&prompt='+chinses_summarize_prompt)
    
    print('url:',url)
    response = requests.get(url)
    result = response.text
    result = json.loads(result)
    print('result1:',result)
    
    answer = result['summarize']

    # if language == 'english' and answer.find('The Question and Answer are:') > 0:
    #     answer=answer.split('The Question and Answer are:')[-1].strip()

    return answer

demo = gr.Blocks(title="AWS Intelligent Q&A Solution Guide")
with demo:
    gr.Markdown(
        "# <center>AWS Intelligent Q&A Solution Guide"
    )

    with gr.Tabs():
        with gr.TabItem("Question Answering"):

            with gr.Row():
                with gr.Column():
                    qa_task_radio = gr.Radio(["Knowledge base Q&A","Chat"],value="Knowledge base Q&A",label="Task")
                    query_textbox = gr.Textbox(label="Query")
                    sessionId_textbox = gr.Textbox(label="Session ID")
                    qa_button = gr.Button("Summit")

                    qa_language_radio = gr.Radio(["chinese","chinese-tc", "english"],value="chinese",label="Language")
                    qa_modelType_radio = gr.Radio(["claude2","llama2(english)","chatglm2"],value="chatglm2",label="Model type")
                    qa_prompt_textbox = gr.Textbox(label="Prompt( must include {context} and {question} )",placeholder=chinese_prompt,lines=2)
                    qa_searchEngine_radio = gr.Radio(["OpenSearch","Kendra"],value="OpenSearch",label="Search engine")
                    qa_index_textbox = gr.Textbox(label="OpenSearch index OR Kendra index id")
                    # qa_em_ep_textbox = gr.Textbox(label="Embedding Endpoint")
                    
                    search_method_radio = gr.Radio(["vector","text","mix"],value="vector",label="Search Method")
                    vec_topK_slider = gr.Slider(label="The number of related documents by vector search",value=1, minimum=1, maximum=10, step=1)
                    txt_topK_slider = gr.Slider(label="The number of related documents by text search",value=1, minimum=1, maximum=10, step=1)
                    vec_score_thresholds_radio = gr.Slider(label="Vector search score thresholds",value=0.01, minimum=0.01, maximum=1, step=0.01)
                    txt_score_thresholds_radio = gr.Slider(label="Text search score thresholds",value=0.01, minimum=0.01, maximum=1, step=0.01)


                    # qa_temperature_slider = gr.Slider(label="Temperature parameter of LLM",value=0.01, minimum=0.01, maximum=1, step=0.01)
                    score_type_checklist = gr.CheckboxGroup(["query_answer_score", "answer_docs_score"],value=["query_answer_score"],label="Confidence score type")

                with gr.Column():
                    qa_output = [gr.outputs.Textbox(label="Answer"), gr.outputs.Textbox(label="Confidence"), gr.outputs.Textbox(label="Source"), gr.outputs.Textbox(label="Url"), gr.outputs.Textbox(label="Request time")]
                                

        with gr.TabItem("Summarize"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(label="Input texts",lines=4)
                    summarize_button = gr.Button("Summit")
                    sm_language_radio = gr.Radio(["chinese", "english"],value="chinese",label="Language")
                    sm_modelType_radio = gr.Radio(["claude2","other"],value="other",label="Model type")
                    sm_prompt_textbox = gr.Textbox(label="Prompt",lines=4, placeholder=chinses_summarize_prompt)
                with gr.Column():
                    text_output = gr.Textbox()
            
    qa_button.click(get_answer, inputs=[qa_task_radio,query_textbox,sessionId_textbox,qa_language_radio,qa_modelType_radio,qa_prompt_textbox,qa_searchEngine_radio,qa_index_textbox,\
        search_method_radio,vec_topK_slider,txt_topK_slider,vec_score_thresholds_radio,txt_score_thresholds_radio,score_type_checklist], outputs=qa_output)
    summarize_button.click(get_summarize, inputs=[text_input,sm_language_radio,sm_modelType_radio,sm_prompt_textbox], outputs=text_output)

demo.launch()
# demo.launch(share=True)