File size: 15,709 Bytes
e0bec4f 3e8c841 3f6b6e1 8c4de87 e0bec4f 3e8c841 9d2b618 8c4de87 3e8c841 8c4de87 9d2b618 3e8c841 9d2b618 8119e89 8c4de87 cd268c4 f916137 3e8c841 e0bec4f 3e8c841 e0bec4f 3e8c841 e0bec4f 3e8c841 e0bec4f 3e8c841 50ee34c 3e8c841 e0bec4f 3e8c841 8c4de87 3e8c841 8c4de87 3e8c841 8c4de87 e0bec4f c7be2db 6f0bd52 e0bec4f 8c4de87 4503d3c bcfa275 b97502a f916137 e0bec4f 8c4de87 9c4d272 e0bec4f 8c4de87 61b4456 9c4d272 8c4de87 e0bec4f 8c4de87 e0bec4f 8c4de87 3e8c841 e0bec4f 8c4de87 3e8c841 e0bec4f 8c4de87 8aa0a12 3e8c841 8c4de87 8aa0a12 8c4de87 63510fe 8c4de87 3e8c841 63510fe 8c4de87 8aa0a12 e0bec4f 8c4de87 e0bec4f 8c4de87 e0bec4f 35e15ba 85c2aae e0bec4f 35e15ba e0bec4f 03238b7 e0bec4f 3e8c841 03238b7 8aa0a12 e0bec4f 03238b7 8aa0a12 e0bec4f 69b8a32 9fe158b 03238b7 470a823 8c4de87 1536d24 470a823 69b8a32 9fe158b 03238b7 6ebdb42 e0bec4f 8c4de87 e0bec4f 8c4de87 e0bec4f 8c4de87 e0bec4f 8c4de87 9d2b618 8c4de87 9d2b618 3e8c841 e0bec4f 3e8c841 e0bec4f 3e8c841 e0bec4f 3e8c841 e0bec4f 94fe057 e0bec4f 4503d3c e0bec4f 8c4de87 e0bec4f 9c4d272 8c4de87 b36c094 8c4de87 08b679c 3e8c841 e0bec4f 8c4de87 6f61340 e0bec4f 8c4de87 3e8c841 e0bec4f 8c4de87 e0bec4f 7091eea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import requests
import json
import gradio as gr
from datetime import datetime
#Fill in your correct configuration
invoke_url = 'https://2ds1b4fk9b.execute-api.us-west-2.amazonaws.com/prod'
bedrock_url = 'https://1n8iqpumdj.execute-api.us-west-2.amazonaws.com/prod'
chinese_index = "digitimes_test_1005_title"
english_index = "chinese_bge_test_0916"
cn_embedding_endpoint = 'huggingface-inference-eb-zh'
cn_llm_endpoint = 'pytorch-inference-chatglm2-g5-4x'
baichuan_llm_endpoint = 'pytorch-inference-llm-baichuan-13b-4bits'
en_embedding_endpoint = 'pytorch-inference-all-minilm-l6-v2'
en_llm_endpoint = 'pytorch-inference-chatglm2-g5-4x'
llama2_llm_endpoint = 'meta-textgeneration-llama-2-7b-f-2023-07-19-06-07-05-430'
responseIfNoDocsFound = ''
#Modify the default prompt as needed
chinese_prompt = """基于以下已知信息,简洁和专业的来回答用户的问题,并告知是依据哪些信息来进行回答的。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
问题: {question}
=========
{context}
=========
答案:"""
english_prompt = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer:"""
chinses_summarize_prompt="""请根据访客与客服的通话记录,写一段访客提出问题的摘要,突出显示与亚马逊云服务相关的要点, 摘要不需要有客服的相关内容:
{text}
摘要是:"""
english_summarize_prompt="""Based on the call records between the visitor and the customer service, write a summary of the visitor's questions, highlighting the key points related to Amazon Web Services, and the summary does not need to have customer service-related content:
{text}
The summary is:"""
claude_chat_prompt_cn="""
Human: 请根据 {history},回答:{human_input}
Assistant:
"""
claude_chat_prompt_cn_tc="""
Human: 請根據 {history},使用繁體中文回答:{human_input}
Assistant:
"""
claude_chat_prompt_english="""
Human: Based on {history}, answer the question:{human_input}
Assistant:
"""
claude_rag_prompt_cn = """
Human: 基于以下已知信息,简洁和专业的来回答用户的问题,如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
问题: {question}
=========
{context}
=========
Assistant:
"""
claude_rag_prompt_cn_tc = """
Human: 基於以下已知信息,簡潔和專業的來回答用戶的問題,如果無法從中得到答案,請說 "根據已知信息無法回答該問題" 或 "沒有提供足夠的相關信息",不允許在答案中添加編造成分,答案請使用繁體中文回答
問題: {question}
=========
{context}
=========
Assistant:
"""
claude_rag_prompt_english = """
Human: Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Assistant:
"""
CHINESE_ENHANCED_SEARCH_PROMPT_TEMPLATE = """You are an AI assistant whose task is to help users express their questions more clearly for easier article retrieval. If the user's question is already clear, you can keep the original question. If the question is still unclear, please optimize and clarify it based on the following user input. Answer in TRADITIONAL CHINESE and without punctuation.
Original question: {text}
Optimized question:"""
api = invoke_url + '/langchain_processor_qa?query='
bedrock_url += '/bedrock?'
def get_answer(task_type,question,sessionId,language,modelType,prompt,searchEngine,index,searchMethod,vecTopK,txtTopK,vecDocsScoreThresholds,txtDocsScoreThresholds,score_type_checklist):
question=question.replace('AWS','亚马逊云科技').replace('aws','亚马逊云科技').replace('Aws','亚马逊云科技')
print('question:',question)
if len(question) > 0:
url = api + question
else:
url = api + "hello"
url += '&requestType=https'
#task type: qa,chat
if task_type == "Knowledge base Q&A":
task = 'qa'
else:
task = 'chat'
url += ('&task='+task)
if len(responseIfNoDocsFound) > 0:
url += ('&responseIfNoDocsFound='+responseIfNoDocsFound)
if language == "english":
url += '&language=english'
url += ('&embeddingEndpoint='+en_embedding_endpoint)
if modelType == "llama2(english)":
url += ('&sagemakerEndpoint='+llama2_llm_endpoint)
elif modelType == "baichuan2":
url += ('&sagemakerEndpoint='+baichuan_llm_endpoint)
else:
url += ('&sagemakerEndpoint='+en_llm_endpoint)
elif language == "chinese":
url += '&language=chinese'
url += ('&embeddingEndpoint='+cn_embedding_endpoint)
if modelType == "baichuan2":
url += ('&sagemakerEndpoint='+baichuan_llm_endpoint)
else:
url += ('&sagemakerEndpoint='+en_llm_endpoint)
elif language == "chinese-tc":
url += '&language=chinese-tc'
url += ('&embeddingEndpoint='+cn_embedding_endpoint)
if modelType == "baichuan2":
url += ('&sagemakerEndpoint='+baichuan_llm_endpoint)
else:
url += ('&sagemakerEndpoint='+en_llm_endpoint)
if len(sessionId) > 0:
url += ('&sessionId='+sessionId)
if modelType == "claude2_api":
url += ('&modelType=bedrock_api')
url += ('&urlOrApiKey='+bedrock_url)
url += ('&modelName=anthropic.claude-v2')
elif modelType == "claude2":
url += ('&modelType=bedrock')
url += ('&modelName=anthropic.claude-v2')
elif modelType == "llama2(english)":
url += ('&modelType=llama2')
if len(prompt) > 0:
url += ('&prompt='+prompt)
elif modelType == "claude2":
if task_type == "Knowledge base Q&A":
if language == "english":
url += ('&prompt='+claude_rag_prompt_english)
elif language == "chinese":
url += ('&prompt='+claude_rag_prompt_cn)
elif language == "chinese-tc":
url += ('&prompt='+claude_rag_prompt_cn_tc)
else:
if language == "english":
url += ('&prompt='+claude_chat_prompt_english)
elif language == "chinese":
url += ('&prompt='+claude_chat_prompt_cn)
elif language == "chinese-tc":
url += ('&prompt='+claude_chat_prompt_cn_tc)
if searchEngine == "OpenSearch":
url += ('&searchEngine=opensearch')
if len(index) > 0:
url += ('&index='+index)
else:
if language.find("chinese") >= 0 and len(chinese_index) >0:
url += ('&index='+chinese_index)
elif language == "english" and len(english_index) >0:
url += ('&index='+english_index)
elif searchEngine == "Kendra":
url += ('&searchEngine=kendra')
if len(index) > 0:
url += ('&kendra_index_id='+index)
if int(vecTopK) > 0:
url += ('&topK='+str(vecTopK))
url += ('&searchMethod='+searchMethod)
if int(txtTopK) > 0:
url += ('&txtDocsNum='+str(txtTopK))
if float(vecDocsScoreThresholds) > 0:
url += ('&vecDocsScoreThresholds='+str(vecDocsScoreThresholds))
if float(txtDocsScoreThresholds) > 0:
url += ('&txtDocsScoreThresholds='+str(txtDocsScoreThresholds))
for score_type in score_type_checklist:
if score_type == "query_answer_score":
url += ('&isCheckedScoreQA=true')
elif score_type == "answer_docs_score":
url += ('&isCheckedScoreAD=true')
print("url:",url)
now1 = datetime.now()#begin time
response = requests.get(url)
now2 = datetime.now()#endtime
request_time = now2-now1
print("request takes time:",request_time)
result = response.text
print('result0:',result)
result = json.loads(result)
print('result:',result)
answer = result['text']
source_list = []
if 'sourceData' in result.keys():
source_list = result['sourceData']
print("answer:",answer)
print('source_list:',source_list)
source_str = ""
query_docs_score_list = []
answer_docs_score_list = []
for i in range(len(source_list)):
item = source_list[i]
print('item:',item)
_id = "num:" + str(item['id'])
try:
source = ''
if 'source' in item.keys():
source = "source:" + item['source']
elif 'title' in item.keys():
source = "source:" + item['title']
except KeyError:
source ="source:unknown"
print("KeyError:source file not found")
qd_score = "qd score:" + str(item['scoreQueryDoc'])
query_docs_score_list.append(item['scoreQueryDoc'])
ad_score = "ad score:" + str(item['scoreAnswerDoc'])
answer_docs_score_list.append(item['scoreAnswerDoc'])
sentence = "sentence:" + item['sentence']
paragraph = "paragraph:" + item['paragraph']
source_str += (_id + " " + source + " " + qd_score + '\n')
# source_str += sentence + '\n'
source_str += paragraph + '\n\n'
confidence = ""
print('query_docs_score_list len:',len(list(query_docs_score_list)),str(query_docs_score_list))
if len(list(query_docs_score_list)) > 0 and float(query_docs_score_list[0]) > 0:
confidence += ("query_docs_score:" + str(query_docs_score_list) + '\n')
query_answer_score = -1
if 'scoreQueryAnswer' in result.keys():
query_answer_score = float(result['scoreQueryAnswer'])
if query_answer_score >= 0:
confidence += ("query_answer_score:" + str(query_answer_score) + '\n')
answer_docs_score = -1
print('answer_docs_score_list len:',len(list(answer_docs_score_list)),str(answer_docs_score_list))
if len(list(answer_docs_score_list)) > 0 and float(answer_docs_score_list[0]) > 0:
confidence += ("answer_docs_score:" + str(answer_docs_score_list) + '\n')
return answer,confidence,source_str,url,request_time
def get_summarize(texts,language,modelType,prompt):
url = api + texts
url += '&task=summarize'
url += '&requestType=https'
if language == "english":
url += '&language=english'
url += ('&embeddingEndpoint='+en_embedding_endpoint)
url += ('&sagemakerEndpoint='+en_llm_endpoint)
elif language == "chinese":
url += '&language=chinese'
url += ('&embeddingEndpoint='+cn_embedding_endpoint)
url += ('&sagemakerEndpoint='+cn_llm_endpoint)
if modelType == "claude2":
url += ('&modelType=bedrock')
url += ('&urlOrApiKey='+bedrock_url)
url += ('&modelName=anthropic.claude-v2')
if len(prompt) > 0:
url += ('&prompt='+prompt)
else:
if language == "english":
url += ('&prompt='+english_summarize_prompt)
elif language == "chinese":
url += ('&prompt='+chinses_summarize_prompt)
print('url:',url)
response = requests.get(url)
result = response.text
result = json.loads(result)
print('result1:',result)
answer = result['summarize']
# if language == 'english' and answer.find('The Question and Answer are:') > 0:
# answer=answer.split('The Question and Answer are:')[-1].strip()
return answer
demo = gr.Blocks(title="AWS Intelligent Q&A Solution Guide")
with demo:
gr.Markdown(
"# <center>AWS Intelligent Q&A Solution Guide"
)
with gr.Tabs():
with gr.TabItem("Question Answering"):
with gr.Row():
with gr.Column():
qa_task_radio = gr.Radio(["Knowledge base Q&A","Chat"],value="Knowledge base Q&A",label="Task")
query_textbox = gr.Textbox(label="Query")
sessionId_textbox = gr.Textbox(label="Session ID")
qa_button = gr.Button("Summit")
qa_language_radio = gr.Radio(["chinese","chinese-tc", "english"],value="chinese",label="Language")
qa_modelType_radio = gr.Radio(["claude2","llama2(english)","chatglm2"],value="chatglm2",label="Model type")
qa_prompt_textbox = gr.Textbox(label="Prompt( must include {context} and {question} )",placeholder=chinese_prompt,lines=2)
qa_searchEngine_radio = gr.Radio(["OpenSearch","Kendra"],value="OpenSearch",label="Search engine")
qa_index_textbox = gr.Textbox(label="OpenSearch index OR Kendra index id")
# qa_em_ep_textbox = gr.Textbox(label="Embedding Endpoint")
search_method_radio = gr.Radio(["vector","text","mix"],value="vector",label="Search Method")
vec_topK_slider = gr.Slider(label="The number of related documents by vector search",value=1, minimum=1, maximum=10, step=1)
txt_topK_slider = gr.Slider(label="The number of related documents by text search",value=1, minimum=1, maximum=10, step=1)
vec_score_thresholds_radio = gr.Slider(label="Vector search score thresholds",value=0.01, minimum=0.01, maximum=1, step=0.01)
txt_score_thresholds_radio = gr.Slider(label="Text search score thresholds",value=0.01, minimum=0.01, maximum=1, step=0.01)
# qa_temperature_slider = gr.Slider(label="Temperature parameter of LLM",value=0.01, minimum=0.01, maximum=1, step=0.01)
score_type_checklist = gr.CheckboxGroup(["query_answer_score", "answer_docs_score"],value=["query_answer_score"],label="Confidence score type")
with gr.Column():
qa_output = [gr.outputs.Textbox(label="Answer"), gr.outputs.Textbox(label="Confidence"), gr.outputs.Textbox(label="Source"), gr.outputs.Textbox(label="Url"), gr.outputs.Textbox(label="Request time")]
with gr.TabItem("Summarize"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Input texts",lines=4)
summarize_button = gr.Button("Summit")
sm_language_radio = gr.Radio(["chinese", "english"],value="chinese",label="Language")
sm_modelType_radio = gr.Radio(["claude2","other"],value="other",label="Model type")
sm_prompt_textbox = gr.Textbox(label="Prompt",lines=4, placeholder=chinses_summarize_prompt)
with gr.Column():
text_output = gr.Textbox()
qa_button.click(get_answer, inputs=[qa_task_radio,query_textbox,sessionId_textbox,qa_language_radio,qa_modelType_radio,qa_prompt_textbox,qa_searchEngine_radio,qa_index_textbox,\
search_method_radio,vec_topK_slider,txt_topK_slider,vec_score_thresholds_radio,txt_score_thresholds_radio,score_type_checklist], outputs=qa_output)
summarize_button.click(get_summarize, inputs=[text_input,sm_language_radio,sm_modelType_radio,sm_prompt_textbox], outputs=text_output)
demo.launch()
# demo.launch(share=True)
|