Spaces:
Running
on
Zero
Running
on
Zero
Initial demo by Shuangfei Zhai
Browse filesReference: https://github.com/apple/ml-mdm/blob/ecbbc341bc863b014682d3501bbece5c3a8b5e8b/ml_mdm/clis/generate_sample.py
app.py
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# For licensing see accompanying LICENSE file.
|
2 |
+
# Copyright (C) 2024 Apple Inc. All rights reserved.
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import shlex
|
6 |
+
import time
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import simple_parsing
|
12 |
+
import yaml
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from torchvision.utils import make_grid
|
18 |
+
|
19 |
+
from ml_mdm import helpers, reader
|
20 |
+
from ml_mdm.config import get_arguments, get_model, get_pipeline
|
21 |
+
from ml_mdm.language_models import factory
|
22 |
+
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
|
25 |
+
# Note that it is called add_arguments, not add_argument.
|
26 |
+
logging.basicConfig(
|
27 |
+
level=getattr(logging, "INFO", None),
|
28 |
+
format="[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s",
|
29 |
+
datefmt="%H:%M:%S",
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def dividable(n):
|
34 |
+
for i in range(int(np.sqrt(n)), 0, -1):
|
35 |
+
if n % i == 0:
|
36 |
+
break
|
37 |
+
return i, n // i
|
38 |
+
|
39 |
+
|
40 |
+
def generate_lm_outputs(device, sample, tokenizer, language_model, args):
|
41 |
+
with torch.no_grad():
|
42 |
+
lm_outputs, lm_mask = language_model(sample, tokenizer)
|
43 |
+
sample["lm_outputs"] = lm_outputs
|
44 |
+
sample["lm_mask"] = lm_mask
|
45 |
+
return sample
|
46 |
+
|
47 |
+
|
48 |
+
def setup_models(args, device):
|
49 |
+
input_channels = 3
|
50 |
+
|
51 |
+
# load the language model
|
52 |
+
tokenizer, language_model = factory.create_lm(args, device=device)
|
53 |
+
language_model_dim = language_model.embed_dim
|
54 |
+
args.unet_config.conditioning_feature_dim = language_model_dim
|
55 |
+
denoising_model = get_model(args.model)(
|
56 |
+
input_channels, input_channels, args.unet_config
|
57 |
+
).to(device)
|
58 |
+
diffusion_model = get_pipeline(args.model)(
|
59 |
+
denoising_model, args.diffusion_config
|
60 |
+
).to(device)
|
61 |
+
# denoising_model.print_size(args.sample_image_size)
|
62 |
+
return tokenizer, language_model, diffusion_model
|
63 |
+
|
64 |
+
|
65 |
+
def plot_logsnr(logsnrs, total_steps):
|
66 |
+
import matplotlib.pyplot as plt
|
67 |
+
|
68 |
+
x = 1 - np.arange(len(logsnrs)) / (total_steps - 1)
|
69 |
+
plt.plot(x, np.asarray(logsnrs))
|
70 |
+
plt.xlabel("timesteps")
|
71 |
+
plt.ylabel("LogSNR")
|
72 |
+
plt.grid(True)
|
73 |
+
plt.xlim(0, 1)
|
74 |
+
plt.ylim(-20, 10)
|
75 |
+
plt.gca().invert_xaxis()
|
76 |
+
|
77 |
+
# Convert the plot to a numpy array
|
78 |
+
fig = plt.gcf()
|
79 |
+
fig.canvas.draw()
|
80 |
+
image = np.array(fig.canvas.renderer._renderer)
|
81 |
+
plt.close()
|
82 |
+
return image
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class GLOBAL_DATA:
|
87 |
+
reader_config: Optional[reader.ReaderConfig] = None
|
88 |
+
tokenizer = None
|
89 |
+
args = None
|
90 |
+
language_model = None
|
91 |
+
diffusion_model = None
|
92 |
+
override_args = ""
|
93 |
+
ckpt_name = ""
|
94 |
+
config_file = ""
|
95 |
+
|
96 |
+
|
97 |
+
global_config = GLOBAL_DATA()
|
98 |
+
|
99 |
+
|
100 |
+
def stop_run():
|
101 |
+
return (
|
102 |
+
gr.update(value="Run", variant="primary", visible=True),
|
103 |
+
gr.update(visible=False),
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def get_model_type(config_file):
|
108 |
+
with open(config_file, "r") as f:
|
109 |
+
d = yaml.safe_load(f)
|
110 |
+
return d.get("model", d.get("vision_model", "unet"))
|
111 |
+
|
112 |
+
|
113 |
+
def generate(
|
114 |
+
config_file="cc12m_64x64.yaml",
|
115 |
+
ckpt_name="vis_model_64x64.pth",
|
116 |
+
prompt="a chair",
|
117 |
+
input_template="",
|
118 |
+
negative_prompt="",
|
119 |
+
negative_template="",
|
120 |
+
batch_size=20,
|
121 |
+
guidance_scale=7.5,
|
122 |
+
threshold_function="clip",
|
123 |
+
num_inference_steps=250,
|
124 |
+
eta=0,
|
125 |
+
save_diffusion_path=False,
|
126 |
+
show_diffusion_path=False,
|
127 |
+
show_xt=False,
|
128 |
+
reader_config="",
|
129 |
+
seed=10,
|
130 |
+
comment="",
|
131 |
+
override_args="",
|
132 |
+
output_inner=False,
|
133 |
+
):
|
134 |
+
np.random.seed(seed)
|
135 |
+
torch.random.manual_seed(seed)
|
136 |
+
|
137 |
+
if len(input_template) > 0:
|
138 |
+
prompt = input_template.format(prompt=prompt)
|
139 |
+
if len(negative_template) > 0:
|
140 |
+
negative_prompt = negative_prompt + negative_template
|
141 |
+
print(f"Postive: {prompt} / Negative: {negative_prompt}")
|
142 |
+
|
143 |
+
if not os.path.exists(ckpt_name):
|
144 |
+
logging.info(f"Did not generate because {ckpt_name} does not exist")
|
145 |
+
return None, None, f"{ckpt_name} does not exist", None, None
|
146 |
+
|
147 |
+
if (
|
148 |
+
global_config.config_file != config_file
|
149 |
+
or global_config.ckpt_name != ckpt_name
|
150 |
+
or global_config.override_args != override_args
|
151 |
+
):
|
152 |
+
# Identify model type
|
153 |
+
model_type = get_model_type(f"configs/models/{config_file}")
|
154 |
+
# reload the arguments
|
155 |
+
args = get_arguments(
|
156 |
+
shlex.split(override_args + f" --model {model_type}"),
|
157 |
+
mode="demo",
|
158 |
+
additional_config_paths=[f"configs/models/{config_file}"],
|
159 |
+
)
|
160 |
+
helpers.print_args(args)
|
161 |
+
|
162 |
+
# setup model when the parent task changed.
|
163 |
+
tokenizer, language_model, diffusion_model = setup_models(args, device)
|
164 |
+
vision_model_file = ckpt_name
|
165 |
+
try:
|
166 |
+
other_items = diffusion_model.model.load(vision_model_file)
|
167 |
+
except Exception as e:
|
168 |
+
logging.error(f"failed to load {vision_model_file}", exc_info=e)
|
169 |
+
return None, None, "Loading Model Error", None, None
|
170 |
+
|
171 |
+
# setup global configs
|
172 |
+
global_config.batch_num = -1 # reset batch num
|
173 |
+
global_config.args = args
|
174 |
+
global_config.override_args = override_args
|
175 |
+
global_config.tokenizer = tokenizer
|
176 |
+
global_config.language_model = language_model
|
177 |
+
global_config.diffusion_model = diffusion_model
|
178 |
+
global_config.reader_config = args.reader_config
|
179 |
+
global_config.config_file = config_file
|
180 |
+
global_config.ckpt_name = ckpt_name
|
181 |
+
|
182 |
+
else:
|
183 |
+
args = global_config.args
|
184 |
+
tokenizer = global_config.tokenizer
|
185 |
+
language_model = global_config.language_model
|
186 |
+
diffusion_model = global_config.diffusion_model
|
187 |
+
|
188 |
+
tokenizer = global_config.tokenizer
|
189 |
+
|
190 |
+
sample = {}
|
191 |
+
sample["text"] = [negative_prompt, prompt] if guidance_scale != 1 else [prompt]
|
192 |
+
sample["tokens"] = np.asarray(
|
193 |
+
reader.process_text(sample["text"], tokenizer, args.reader_config)
|
194 |
+
)
|
195 |
+
sample = generate_lm_outputs(device, sample, tokenizer, language_model, args)
|
196 |
+
assert args.sample_image_size != -1
|
197 |
+
|
198 |
+
# set up thresholding
|
199 |
+
from samplers import ThresholdType
|
200 |
+
|
201 |
+
diffusion_model.sampler._config.threshold_function = {
|
202 |
+
"clip": ThresholdType.CLIP,
|
203 |
+
"dynamic (Imagen)": ThresholdType.DYNAMIC,
|
204 |
+
"dynamic (DeepFloyd)": ThresholdType.DYNAMIC_IF,
|
205 |
+
"none": ThresholdType.NONE,
|
206 |
+
}[threshold_function]
|
207 |
+
|
208 |
+
output_comments = f"{comment}\n"
|
209 |
+
|
210 |
+
bsz = batch_size
|
211 |
+
with torch.no_grad():
|
212 |
+
if bsz > 1:
|
213 |
+
sample["lm_outputs"] = repeat(
|
214 |
+
sample["lm_outputs"], "b n d -> (b r) n d", r=bsz
|
215 |
+
)
|
216 |
+
sample["lm_mask"] = repeat(sample["lm_mask"], "b n -> (b r) n", r=bsz)
|
217 |
+
|
218 |
+
num_samples = bsz
|
219 |
+
original, outputs, logsnrs = [], [], []
|
220 |
+
logging.info(f"Starting to sample from the model")
|
221 |
+
start_time = time.time()
|
222 |
+
for step, result in enumerate(
|
223 |
+
diffusion_model.sample(
|
224 |
+
num_samples,
|
225 |
+
sample,
|
226 |
+
args.sample_image_size,
|
227 |
+
device,
|
228 |
+
return_sequence=False,
|
229 |
+
num_inference_steps=num_inference_steps,
|
230 |
+
ddim_eta=eta,
|
231 |
+
guidance_scale=guidance_scale,
|
232 |
+
resample_steps=True,
|
233 |
+
disable_bar=False,
|
234 |
+
yield_output=True,
|
235 |
+
yield_full=True,
|
236 |
+
output_inner=output_inner,
|
237 |
+
)
|
238 |
+
):
|
239 |
+
x0, x_t, extra = result
|
240 |
+
if step < num_inference_steps:
|
241 |
+
g = extra[0][0, 0, 0, 0].cpu()
|
242 |
+
logsnrs += [torch.log(g / (1 - g))]
|
243 |
+
output = x0 if not show_xt else x_t
|
244 |
+
output = torch.clamp(output * 0.5 + 0.5, min=0, max=1).cpu()
|
245 |
+
original += [
|
246 |
+
output if not output_inner else output[..., -args.sample_image_size :]
|
247 |
+
]
|
248 |
+
|
249 |
+
output = (
|
250 |
+
make_grid(output, nrow=dividable(bsz)[0]).permute(1, 2, 0).numpy() * 255
|
251 |
+
).astype(np.uint8)
|
252 |
+
outputs += [output]
|
253 |
+
|
254 |
+
output_video_path = None
|
255 |
+
if step == num_inference_steps and save_diffusion_path:
|
256 |
+
import imageio
|
257 |
+
|
258 |
+
writer = imageio.get_writer("temp_output.mp4", fps=32)
|
259 |
+
for output in outputs:
|
260 |
+
writer.append_data(output)
|
261 |
+
writer.close()
|
262 |
+
output_video_path = "temp_output.mp4"
|
263 |
+
if any(diffusion_model.model.vision_model.is_temporal):
|
264 |
+
data = rearrange(
|
265 |
+
original[-1],
|
266 |
+
"(a b) c (n h) (m w) -> (n m) (a h) (b w) c",
|
267 |
+
a=dividable(bsz)[0],
|
268 |
+
n=4,
|
269 |
+
m=4,
|
270 |
+
)
|
271 |
+
data = (data.numpy() * 255).astype(np.uint8)
|
272 |
+
writer = imageio.get_writer("temp_output.mp4", fps=4)
|
273 |
+
for d in data:
|
274 |
+
writer.append_data(d)
|
275 |
+
writer.close()
|
276 |
+
|
277 |
+
if show_diffusion_path or (step == num_inference_steps):
|
278 |
+
yield output, plot_logsnr(
|
279 |
+
logsnrs, num_inference_steps
|
280 |
+
), output_comments + f"Step ({step} / {num_inference_steps}) Time ({time.time() - start_time:.4}s)", output_video_path, gr.update(
|
281 |
+
value="Run",
|
282 |
+
variant="primary",
|
283 |
+
visible=(step == num_inference_steps),
|
284 |
+
), gr.update(
|
285 |
+
value="Stop", variant="stop", visible=(step != num_inference_steps)
|
286 |
+
)
|
287 |
+
|
288 |
+
|
289 |
+
def main(args):
|
290 |
+
# get the language model outputs
|
291 |
+
example_texts = open("data/prompts_demo.tsv").readlines()
|
292 |
+
|
293 |
+
css = """
|
294 |
+
#config-accordion, #logs-accordion {color: black !important;}
|
295 |
+
.dark #config-accordion, .dark #logs-accordion {color: white !important;}
|
296 |
+
.stop {background: darkred !important;}
|
297 |
+
"""
|
298 |
+
|
299 |
+
with gr.Blocks(
|
300 |
+
title="Demo of Text-to-Image Diffusion",
|
301 |
+
theme="EveryPizza/Cartoony-Gradio-Theme",
|
302 |
+
css=css,
|
303 |
+
) as demo:
|
304 |
+
with gr.Row(equal_height=True):
|
305 |
+
header = """
|
306 |
+
# MLR Text-to-Image Diffusion Model Web Demo
|
307 |
+
|
308 |
+
### Usage
|
309 |
+
- Select examples below or manually input model and prompts
|
310 |
+
- Change more advanced settings such as inference steps.
|
311 |
+
"""
|
312 |
+
gr.Markdown(header)
|
313 |
+
|
314 |
+
with gr.Row(equal_height=False):
|
315 |
+
pid = gr.State()
|
316 |
+
with gr.Column(scale=2):
|
317 |
+
with gr.Row(equal_height=False):
|
318 |
+
with gr.Column(scale=1):
|
319 |
+
config_file = gr.Dropdown(
|
320 |
+
[
|
321 |
+
"cc12m_64x64.yaml",
|
322 |
+
"cc12m_256x256.yaml",
|
323 |
+
"cc12m_1024x1024.yaml",
|
324 |
+
],
|
325 |
+
value="cc12m_64x64.yaml",
|
326 |
+
label="Select the config file",
|
327 |
+
)
|
328 |
+
with gr.Column(scale=1):
|
329 |
+
ckpt_name = gr.Dropdown(
|
330 |
+
[
|
331 |
+
"vis_model_64x64.pth",
|
332 |
+
"vis_model_256x256.pth",
|
333 |
+
"vis_model_1024x1024.pth",
|
334 |
+
],
|
335 |
+
value="vis_model_64x64.pth",
|
336 |
+
label="Load checkpoint",
|
337 |
+
)
|
338 |
+
with gr.Row(equal_height=False):
|
339 |
+
with gr.Column(scale=1):
|
340 |
+
save_diffusion_path = gr.Checkbox(
|
341 |
+
value=True, label="Show diffusion path as a video"
|
342 |
+
)
|
343 |
+
show_diffusion_path = gr.Checkbox(
|
344 |
+
value=False, label="Show diffusion progress"
|
345 |
+
)
|
346 |
+
with gr.Column(scale=1):
|
347 |
+
show_xt = gr.Checkbox(value=False, label="Show predicted x_t")
|
348 |
+
output_inner = gr.Checkbox(
|
349 |
+
value=False,
|
350 |
+
label="Output inner UNet (High-res models Only)",
|
351 |
+
)
|
352 |
+
|
353 |
+
with gr.Column(scale=2):
|
354 |
+
prompt_input = gr.Textbox(label="Input prompt")
|
355 |
+
with gr.Row(equal_height=False):
|
356 |
+
with gr.Column(scale=1):
|
357 |
+
guidance_scale = gr.Slider(
|
358 |
+
value=7.5,
|
359 |
+
minimum=0.0,
|
360 |
+
maximum=50,
|
361 |
+
step=0.1,
|
362 |
+
label="Guidance scale",
|
363 |
+
)
|
364 |
+
with gr.Column(scale=1):
|
365 |
+
batch_size = gr.Slider(
|
366 |
+
value=16, minimum=1, maximum=128, step=1, label="Batch size"
|
367 |
+
)
|
368 |
+
|
369 |
+
with gr.Row(equal_height=False):
|
370 |
+
comment = gr.Textbox(value="", label="Comments to the model (optional)")
|
371 |
+
|
372 |
+
with gr.Row(equal_height=False):
|
373 |
+
with gr.Column(scale=2):
|
374 |
+
output_image = gr.Image(value=None, label="Output image")
|
375 |
+
with gr.Column(scale=2):
|
376 |
+
output_video = gr.Video(value=None, label="Diffusion Path")
|
377 |
+
|
378 |
+
with gr.Row(equal_height=False):
|
379 |
+
with gr.Column(scale=2):
|
380 |
+
with gr.Accordion(
|
381 |
+
"Advanced settings", open=False, elem_id="config-accordion"
|
382 |
+
):
|
383 |
+
input_template = gr.Dropdown(
|
384 |
+
[
|
385 |
+
"",
|
386 |
+
"breathtaking {prompt}. award-winning, professional, highly detailed",
|
387 |
+
"anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
|
388 |
+
"concept art {prompt}. digital artwork, illustrative, painterly, matte painting, highly detailed",
|
389 |
+
"ethereal fantasy concept art of {prompt}. magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
390 |
+
"cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
391 |
+
"cinematic film still {prompt}. shallow depth of field, vignette, highly detailed, high budget Hollywood movie, bokeh, cinemascope, moody",
|
392 |
+
"analog film photo {prompt}. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage",
|
393 |
+
"vaporwave synthwave style {prompt}. cyberpunk, neon, vibes, stunningly beautiful, crisp, detailed, sleek, ultramodern, high contrast, cinematic composition",
|
394 |
+
"isometric style {prompt}. vibrant, beautiful, crisp, detailed, ultra detailed, intricate",
|
395 |
+
"low-poly style {prompt}. ambient occlusion, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
|
396 |
+
"claymation style {prompt}. sculpture, clay art, centered composition, play-doh",
|
397 |
+
"professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
|
398 |
+
"origami style {prompt}. paper art, pleated paper, folded, origami art, pleats, cut and fold, centered composition",
|
399 |
+
"pixel-art {prompt}. low-res, blocky, pixel art style, 16-bit graphics",
|
400 |
+
],
|
401 |
+
value="",
|
402 |
+
label="Positive Template (by default, not use)",
|
403 |
+
)
|
404 |
+
with gr.Row(equal_height=False):
|
405 |
+
with gr.Column(scale=1):
|
406 |
+
negative_prompt_input = gr.Textbox(
|
407 |
+
value="", label="Negative prompt"
|
408 |
+
)
|
409 |
+
with gr.Column(scale=1):
|
410 |
+
negative_template = gr.Dropdown(
|
411 |
+
[
|
412 |
+
"",
|
413 |
+
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry",
|
414 |
+
"photo, deformed, black and white, realism, disfigured, low contrast",
|
415 |
+
"photo, photorealistic, realism, ugly",
|
416 |
+
"photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
417 |
+
"drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
418 |
+
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
419 |
+
"painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
|
420 |
+
"illustration, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
421 |
+
"deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy, realistic, photographic",
|
422 |
+
"noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo",
|
423 |
+
"ugly, deformed, noisy, low poly, blurry, painting",
|
424 |
+
],
|
425 |
+
value="",
|
426 |
+
label="Negative Template (by default, not use)",
|
427 |
+
)
|
428 |
+
|
429 |
+
with gr.Row(equal_height=False):
|
430 |
+
with gr.Column(scale=1):
|
431 |
+
threshold_function = gr.Dropdown(
|
432 |
+
[
|
433 |
+
"clip",
|
434 |
+
"dynamic (Imagen)",
|
435 |
+
"dynamic (DeepFloyd)",
|
436 |
+
"none",
|
437 |
+
],
|
438 |
+
value="dynamic (DeepFloyd)",
|
439 |
+
label="Thresholding",
|
440 |
+
)
|
441 |
+
with gr.Column(scale=1):
|
442 |
+
reader_config = gr.Dropdown(
|
443 |
+
["configs/datasets/reader_config.yaml"],
|
444 |
+
value="configs/datasets/reader_config.yaml",
|
445 |
+
label="Reader Config",
|
446 |
+
)
|
447 |
+
with gr.Row(equal_height=False):
|
448 |
+
with gr.Column(scale=1):
|
449 |
+
num_inference_steps = gr.Slider(
|
450 |
+
value=50,
|
451 |
+
minimum=1,
|
452 |
+
maximum=2000,
|
453 |
+
step=1,
|
454 |
+
label="# of steps",
|
455 |
+
)
|
456 |
+
with gr.Column(scale=1):
|
457 |
+
eta = gr.Slider(
|
458 |
+
value=0,
|
459 |
+
minimum=0,
|
460 |
+
maximum=1,
|
461 |
+
step=0.05,
|
462 |
+
label="DDIM eta",
|
463 |
+
)
|
464 |
+
seed = gr.Slider(
|
465 |
+
value=137,
|
466 |
+
minimum=0,
|
467 |
+
maximum=2147483647,
|
468 |
+
step=1,
|
469 |
+
label="Random seed",
|
470 |
+
)
|
471 |
+
override_args = gr.Textbox(
|
472 |
+
value="--reader_config.max_token_length 128 --reader_config.max_caption_length 512",
|
473 |
+
label="Override model arguments (optional)",
|
474 |
+
)
|
475 |
+
|
476 |
+
run_btn = gr.Button(value="Run", variant="primary")
|
477 |
+
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
|
478 |
+
|
479 |
+
with gr.Column(scale=2):
|
480 |
+
with gr.Accordion(
|
481 |
+
"Addditional outputs", open=False, elem_id="output-accordion"
|
482 |
+
):
|
483 |
+
with gr.Row(equal_height=True):
|
484 |
+
output_text = gr.Textbox(value=None, label="System output")
|
485 |
+
with gr.Row(equal_height=True):
|
486 |
+
logsnr_fig = gr.Image(value=None, label="Noise schedule")
|
487 |
+
|
488 |
+
run_event = run_btn.click(
|
489 |
+
fn=generate,
|
490 |
+
inputs=[
|
491 |
+
config_file,
|
492 |
+
ckpt_name,
|
493 |
+
prompt_input,
|
494 |
+
input_template,
|
495 |
+
negative_prompt_input,
|
496 |
+
negative_template,
|
497 |
+
batch_size,
|
498 |
+
guidance_scale,
|
499 |
+
threshold_function,
|
500 |
+
num_inference_steps,
|
501 |
+
eta,
|
502 |
+
save_diffusion_path,
|
503 |
+
show_diffusion_path,
|
504 |
+
show_xt,
|
505 |
+
reader_config,
|
506 |
+
seed,
|
507 |
+
comment,
|
508 |
+
override_args,
|
509 |
+
output_inner,
|
510 |
+
],
|
511 |
+
outputs=[
|
512 |
+
output_image,
|
513 |
+
logsnr_fig,
|
514 |
+
output_text,
|
515 |
+
output_video,
|
516 |
+
run_btn,
|
517 |
+
stop_btn,
|
518 |
+
],
|
519 |
+
)
|
520 |
+
|
521 |
+
stop_btn.click(
|
522 |
+
fn=stop_run,
|
523 |
+
outputs=[run_btn, stop_btn],
|
524 |
+
cancels=[run_event],
|
525 |
+
queue=False,
|
526 |
+
)
|
527 |
+
example0 = gr.Examples(
|
528 |
+
[
|
529 |
+
["cc12m_64x64.yaml", "vis_model_64x64.pth", 64, 50, 0],
|
530 |
+
["cc12m_256x256.yaml", "vis_model_256x256.pth", 16, 100, 0],
|
531 |
+
["cc12m_1024x1024.yaml", "vis_model_1024x1024.pth", 4, 250, 1],
|
532 |
+
],
|
533 |
+
inputs=[config_file, ckpt_name, batch_size, num_inference_steps, eta],
|
534 |
+
)
|
535 |
+
example1 = gr.Examples(
|
536 |
+
examples=[[t.strip()] for t in example_texts],
|
537 |
+
inputs=[prompt_input],
|
538 |
+
)
|
539 |
+
|
540 |
+
launch_args = {"server_port": int(args.port), "server_name": "0.0.0.0"}
|
541 |
+
demo.queue(default_concurrency_limit=1).launch(**launch_args)
|
542 |
+
|
543 |
+
|
544 |
+
if __name__ == "__main__":
|
545 |
+
parser = simple_parsing.ArgumentParser(description="pre-loading demo")
|
546 |
+
parser.add_argument("--port", type=int, default=19231)
|
547 |
+
args = parser.parse_known_args()[0]
|
548 |
+
main(args)
|