File size: 12,925 Bytes
85a7d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import torch
import librosa
import argparse
import numpy as np
import soundfile as sf
import pyworld as pw
import parselmouth
import hashlib
from ast import literal_eval
from slicer import Slicer
from ddsp.vocoder import load_model, F0_Extractor, Volume_Extractor, Units_Encoder
from ddsp.core import upsample
from diffusion.unit2mel import load_model_vocoder
from tqdm import tqdm

def check_args(ddsp_args, diff_args):
    if ddsp_args.data.sampling_rate != diff_args.data.sampling_rate:
        print("Unmatch data.sampling_rate!")
        return False
    if ddsp_args.data.block_size != diff_args.data.block_size:
        print("Unmatch data.block_size!")
        return False
    if ddsp_args.data.encoder != diff_args.data.encoder:
        print("Unmatch data.encoder!")
        return False
    return True
    
def parse_args(args=None, namespace=None):
    """Parse command-line arguments."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-diff",
        "--diff_ckpt",
        type=str,
        required=True,
        help="path to the diffusion model checkpoint",
    )
    parser.add_argument(
        "-ddsp",
        "--ddsp_ckpt",
        type=str,
        required=False,
        default="None",
        help="path to the DDSP model checkpoint (for shallow diffusion)",
    )
    parser.add_argument(
        "-d",
        "--device",
        type=str,
        default=None,
        required=False,
        help="cpu or cuda, auto if not set")
    parser.add_argument(
        "-i",
        "--input",
        type=str,
        required=True,
        help="path to the input audio file",
    )
    parser.add_argument(
        "-o",
        "--output",
        type=str,
        required=True,
        help="path to the output audio file",
    )
    parser.add_argument(
        "-id",
        "--spk_id",
        type=str,
        required=False,
        default=1,
        help="speaker id (for multi-speaker model) | default: 1",
    )
    parser.add_argument(
        "-mix",
        "--spk_mix_dict",
        type=str,
        required=False,
        default="None",
        help="mix-speaker dictionary (for multi-speaker model) | default: None",
    )
    parser.add_argument(
        "-k",
        "--key",
        type=str,
        required=False,
        default=0,
        help="key changed (number of semitones) | default: 0",
    )
    parser.add_argument(
        "-f",
        "--formant_shift_key",
        type=str,
        required=False,
        default=0,
        help="formant changed (number of semitones) , only for pitch-augmented model| default: 0",
    )
    parser.add_argument(
        "-pe",
        "--pitch_extractor",
        type=str,
        required=False,
        default='crepe',
        help="pitch extrator type: parselmouth, dio, harvest, crepe (default)",
    )
    parser.add_argument(
        "-fmin",
        "--f0_min",
        type=str,
        required=False,
        default=50,
        help="min f0 (Hz) | default: 50",
    )
    parser.add_argument(
        "-fmax",
        "--f0_max",
        type=str,
        required=False,
        default=1100,
        help="max f0 (Hz) | default: 1100",
    )
    parser.add_argument(
        "-th",
        "--threhold",
        type=str,
        required=False,
        default=-60,
        help="response threhold (dB) | default: -60",
    )
    parser.add_argument(
        "-diffid",
        "--diff_spk_id",
        type=str,
        required=False,
        default='auto',
        help="diffusion speaker id (for multi-speaker model) | default: auto",
    )
    parser.add_argument(
        "-speedup",
        "--speedup",
        type=str,
        required=False,
        default='auto',
        help="speed up | default: auto",
    )
    parser.add_argument(
        "-method",
        "--method",
        type=str,
        required=False,
        default='auto',
        help="pndm or dpm-solver | default: auto",
    )
    parser.add_argument(
        "-kstep",
        "--k_step",
        type=str,
        required=False,
        default=None,
        help="shallow diffusion steps | default: None",
    )
    return parser.parse_args(args=args, namespace=namespace)

    
def split(audio, sample_rate, hop_size, db_thresh = -40, min_len = 5000):
    slicer = Slicer(
                sr=sample_rate,
                threshold=db_thresh,
                min_length=min_len)       
    chunks = dict(slicer.slice(audio))
    result = []
    for k, v in chunks.items():
        tag = v["split_time"].split(",")
        if tag[0] != tag[1]:
            start_frame = int(int(tag[0]) // hop_size)
            end_frame = int(int(tag[1]) // hop_size)
            if end_frame > start_frame:
                result.append((
                        start_frame, 
                        audio[int(start_frame * hop_size) : int(end_frame * hop_size)]))
    return result


def cross_fade(a: np.ndarray, b: np.ndarray, idx: int):
    result = np.zeros(idx + b.shape[0])
    fade_len = a.shape[0] - idx
    np.copyto(dst=result[:idx], src=a[:idx])
    k = np.linspace(0, 1.0, num=fade_len, endpoint=True)
    result[idx: a.shape[0]] = (1 - k) * a[idx:] + k * b[: fade_len]
    np.copyto(dst=result[a.shape[0]:], src=b[fade_len:])
    return result


if __name__ == '__main__':
    # parse commands
    cmd = parse_args()
    
    #device = 'cpu' 
    device = cmd.device
    if device is None:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    # load diffusion model
    model, vocoder, args = load_model_vocoder(cmd.diff_ckpt, device=device)
    
    # load input
    audio, sample_rate = librosa.load(cmd.input, sr=None)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio)
    hop_size = args.data.block_size * sample_rate / args.data.sampling_rate
    
    # get MD5 hash from wav file
    md5_hash = ""
    with open(cmd.input, 'rb') as f:
        data = f.read()
        md5_hash = hashlib.md5(data).hexdigest()
        print("MD5: " + md5_hash)
    
    cache_dir_path = os.path.join(os.path.dirname(__file__), "cache")
    cache_file_path = os.path.join(cache_dir_path, f"{cmd.pitch_extractor}_{hop_size}_{cmd.f0_min}_{cmd.f0_max}_{md5_hash}.npy")
    
    is_cache_available = os.path.exists(cache_file_path)
    if is_cache_available:
        # f0 cache load
        print('Loading pitch curves for input audio from cache directory...')
        f0 = np.load(cache_file_path, allow_pickle=False)
    else:
        # extract f0
        print('Pitch extractor type: ' + cmd.pitch_extractor)
        pitch_extractor = F0_Extractor(
                            cmd.pitch_extractor, 
                            sample_rate, 
                            hop_size, 
                            float(cmd.f0_min), 
                            float(cmd.f0_max))
        print('Extracting the pitch curve of the input audio...')
        f0 = pitch_extractor.extract(audio, uv_interp = True, device = device)
        
        # f0 cache save
        os.makedirs(cache_dir_path, exist_ok=True)
        np.save(cache_file_path, f0, allow_pickle=False)
    
    f0 = torch.from_numpy(f0).float().to(device).unsqueeze(-1).unsqueeze(0)
    
    # key change
    f0 = f0 * 2 ** (float(cmd.key) / 12)
    
    # formant change
    formant_shift_key = torch.LongTensor(np.array([[float(cmd.formant_shift_key)]])).to(device)
    
    # extract volume 
    print('Extracting the volume envelope of the input audio...')
    volume_extractor = Volume_Extractor(hop_size)
    volume = volume_extractor.extract(audio)
    mask = (volume > 10 ** (float(cmd.threhold) / 20)).astype('float')
    mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
    mask = np.array([np.max(mask[n : n + 9]) for n in range(len(mask) - 8)])
    mask = torch.from_numpy(mask).float().to(device).unsqueeze(-1).unsqueeze(0)
    mask = upsample(mask, args.data.block_size).squeeze(-1)
    volume = torch.from_numpy(volume).float().to(device).unsqueeze(-1).unsqueeze(0)
    
    # load units encoder
    if args.data.encoder == 'cnhubertsoftfish':
        cnhubertsoft_gate = args.data.cnhubertsoft_gate
    else:
        cnhubertsoft_gate = 10
    units_encoder = Units_Encoder(
                        args.data.encoder, 
                        args.data.encoder_ckpt, 
                        args.data.encoder_sample_rate, 
                        args.data.encoder_hop_size,
                        cnhubertsoft_gate=cnhubertsoft_gate,
                        device = device)
                            
    # speaker id or mix-speaker dictionary
    spk_mix_dict = literal_eval(cmd.spk_mix_dict)
    spk_id = torch.LongTensor(np.array([[int(cmd.spk_id)]])).to(device)
    if cmd.diff_spk_id == 'auto':
        diff_spk_id = spk_id
    else:
        diff_spk_id = torch.LongTensor(np.array([[int(cmd.diff_spk_id)]])).to(device)
    if spk_mix_dict is not None:
        print('Mix-speaker mode')
    else:
        print('DDSP Speaker ID: '+ str(int(cmd.spk_id)))
        print('Diffusion Speaker ID: '+ str(cmd.diff_spk_id)) 
    
    # speed up
    if cmd.speedup == 'auto':
        infer_speedup = args.infer.speedup
    else:
        infer_speedup = int(cmd.speedup)
    if cmd.method == 'auto':
        method = args.infer.method
    else:
        method = cmd.method
    if infer_speedup > 1:
        print('Sampling method: '+ method)
        print('Speed up: '+ str(infer_speedup))
    else:
        print('Sampling method: DDPM')
    
    ddsp = None
    input_mel = None
    k_step = None
    if cmd.k_step is not None:
        k_step = int(cmd.k_step)
        print('Shallow diffusion step: ' + str(k_step))
        if cmd.ddsp_ckpt != "None":
            # load ddsp model
            ddsp, ddsp_args = load_model(cmd.ddsp_ckpt, device=device)
            if not check_args(ddsp_args, args):
                print("Cannot use this DDSP model for shallow diffusion, gaussian diffusion will be used!")
                ddsp = None
        else:
            print('DDSP model is not identified!')
            print('Extracting the mel spectrum of the input audio for shallow diffusion...')
            audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(device)
            input_mel = vocoder.extract(audio_t, sample_rate)
            input_mel = torch.cat((input_mel, input_mel[:,-1:,:]), 1)
    else:
        print('Shallow diffusion step is not identified, gaussian diffusion will be used!')
        
    # forward and save the output
    result = np.zeros(0)
    current_length = 0
    segments = split(audio, sample_rate, hop_size)
    print('Cut the input audio into ' + str(len(segments)) + ' slices')
    with torch.no_grad():
        for segment in tqdm(segments):
            start_frame = segment[0]
            seg_input = torch.from_numpy(segment[1]).float().unsqueeze(0).to(device)
            seg_units = units_encoder.encode(seg_input, sample_rate, hop_size)
           
            seg_f0 = f0[:, start_frame : start_frame + seg_units.size(1), :]
            seg_volume = volume[:, start_frame : start_frame + seg_units.size(1), :]
            if ddsp is not None:
                seg_ddsp_f0 = 2 ** (-float(cmd.formant_shift_key) / 12) * seg_f0
                seg_ddsp_output, _ , (_, _) = ddsp(seg_units, seg_ddsp_f0, seg_volume, spk_id = spk_id, spk_mix_dict = spk_mix_dict)
                seg_input_mel = vocoder.extract(seg_ddsp_output, args.data.sampling_rate, keyshift=float(cmd.formant_shift_key))
            elif input_mel != None:
                seg_input_mel = input_mel[:, start_frame : start_frame + seg_units.size(1), :]
            else:
                seg_input_mel = None
                
            seg_mel = model(
                    seg_units, 
                    seg_f0, 
                    seg_volume, 
                    spk_id = diff_spk_id, 
                    spk_mix_dict = spk_mix_dict,
                    aug_shift = formant_shift_key,
                    gt_spec=seg_input_mel,
                    infer=True, 
                    infer_speedup=infer_speedup, 
                    method=method,
                    k_step=k_step)
            seg_output = vocoder.infer(seg_mel, seg_f0)
            seg_output *= mask[:, start_frame * args.data.block_size : (start_frame + seg_units.size(1)) * args.data.block_size]
            seg_output = seg_output.squeeze().cpu().numpy()
            
            silent_length = round(start_frame * args.data.block_size) - current_length
            if silent_length >= 0:
                result = np.append(result, np.zeros(silent_length))
                result = np.append(result, seg_output)
            else:
                result = cross_fade(result, seg_output, current_length + silent_length)
            current_length = current_length + silent_length + len(seg_output)
        sf.write(cmd.output, result, args.data.sampling_rate)