File size: 5,869 Bytes
85a7d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import time
import numpy as np
import torch
import librosa
from logger.saver import Saver
from logger import utils

def test(args, model, vocoder, loader_test, saver):
    print(' [*] testing...')
    model.eval()

    # losses
    test_loss = 0.
    
    # intialization
    num_batches = len(loader_test)
    rtf_all = []
    
    # run
    with torch.no_grad():
        for bidx, data in enumerate(loader_test):
            fn = data['name'][0]
            print('--------')
            print('{}/{} - {}'.format(bidx, num_batches, fn))

            # unpack data
            for k in data.keys():
                if k != 'name':
                    data[k] = data[k].to(args.device)
            print('>>', data['name'][0])

            # forward
            st_time = time.time()
            mel = model(
                    data['units'], 
                    data['f0'], 
                    data['volume'], 
                    data['spk_id'],
                    gt_spec=None,
                    infer=True, 
                    infer_speedup=args.infer.speedup, 
                    method=args.infer.method)
            signal = vocoder.infer(mel, data['f0'])
            ed_time = time.time()
                        
            # RTF
            run_time = ed_time - st_time
            song_time = signal.shape[-1] / args.data.sampling_rate
            rtf = run_time / song_time
            print('RTF: {}  | {} / {}'.format(rtf, run_time, song_time))
            rtf_all.append(rtf)
           
            # loss
            for i in range(args.train.batch_size):
                loss = model(
                    data['units'], 
                    data['f0'], 
                    data['volume'], 
                    data['spk_id'], 
                    gt_spec=data['mel'],
                    infer=False)
                test_loss += loss.item()
            
            # log mel
            saver.log_spec(data['name'][0], data['mel'], mel)
            
            # log audio
            path_audio = os.path.join(args.data.valid_path, 'audio', data['name'][0]) + '.wav'
            audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
            if len(audio.shape) > 1:
                audio = librosa.to_mono(audio)
            audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
            saver.log_audio({fn+'/gt.wav': audio, fn+'/pred.wav': signal})
            
    # report
    test_loss /= args.train.batch_size
    test_loss /= num_batches 
    
    # check
    print(' [test_loss] test_loss:', test_loss)
    print(' Real Time Factor', np.mean(rtf_all))
    return test_loss


def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
    # saver
    saver = Saver(args, initial_global_step=initial_global_step)

    # model size
    params_count = utils.get_network_paras_amount({'model': model})
    saver.log_info('--- model size ---')
    saver.log_info(params_count)
    
    # run
    num_batches = len(loader_train)
    model.train()
    saver.log_info('======= start training =======')
    for epoch in range(args.train.epochs):
        for batch_idx, data in enumerate(loader_train):
            saver.global_step_increment()
            optimizer.zero_grad()

            # unpack data
            for k in data.keys():
                if k != 'name':
                    data[k] = data[k].to(args.device)
            
            # forward
            loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'], 
                            aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False)
            
            # handle nan loss
            if torch.isnan(loss):
                raise ValueError(' [x] nan loss ')
            else:
                # backpropagate
                loss.backward()
                optimizer.step()
                scheduler.step()
                
            # log loss
            if saver.global_step % args.train.interval_log == 0:
                current_lr =  optimizer.param_groups[0]['lr']
                saver.log_info(
                    'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
                        epoch,
                        batch_idx,
                        num_batches,
                        args.env.expdir,
                        args.train.interval_log/saver.get_interval_time(),
                        current_lr,
                        loss.item(),
                        saver.get_total_time(),
                        saver.global_step
                    )
                )
                
                saver.log_value({
                    'train/loss': loss.item()
                })
                
                saver.log_value({
                    'train/lr': current_lr
                })
            
            # validation
            if saver.global_step % args.train.interval_val == 0:
                # save latest
                saver.save_model(model, optimizer, postfix=f'{saver.global_step}')
                last_val_step = saver.global_step - args.train.interval_val
                if last_val_step % args.train.interval_force_save != 0:
                    saver.delete_model(postfix=f'{last_val_step}')
                
                # run testing set
                
                test_loss = test(args, model, vocoder, loader_test, saver)
             
                saver.log_info(
                    ' --- <validation> --- \nloss: {:.3f}. '.format(
                        test_loss,
                    )
                )
                
                saver.log_value({
                    'validation/loss': test_loss
                })
                
                model.train()