File size: 7,613 Bytes
85a7d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import numpy as np
import random
import librosa
import torch
import pyworld as pw
import parselmouth
import argparse
import shutil
from logger import utils
from tqdm import tqdm
from ddsp.vocoder import F0_Extractor, Volume_Extractor, Units_Encoder
from diffusion.vocoder import Vocoder
from logger.utils import traverse_dir
import concurrent.futures

def parse_args(args=None, namespace=None):
    """Parse command-line arguments."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c",
        "--config",
        type=str,
        required=True,
        help="path to the config file")
    parser.add_argument(
        "-d",
        "--device",
        type=str,
        default=None,
        required=False,
        help="cpu or cuda, auto if not set")
    return parser.parse_args(args=args, namespace=namespace)
    
def preprocess(path, f0_extractor, volume_extractor, mel_extractor, units_encoder, sample_rate, hop_size, device = 'cuda', use_pitch_aug = False):
    
    path_srcdir  = os.path.join(path, 'audio')
    path_unitsdir  = os.path.join(path, 'units')
    path_f0dir  = os.path.join(path, 'f0')
    path_volumedir  = os.path.join(path, 'volume')
    path_augvoldir  = os.path.join(path, 'aug_vol')
    path_meldir  = os.path.join(path, 'mel')
    path_augmeldir  = os.path.join(path, 'aug_mel')
    path_skipdir = os.path.join(path, 'skip')
    
    # list files
    filelist =  traverse_dir(
        path_srcdir,
        extension='wav',
        is_pure=True,
        is_sort=True,
        is_ext=True)
    
    # pitch augmentation dictionary
    pitch_aug_dict = {}
    
    # run  
    def process(file):
        ext = file.split('.')[-1]
        binfile = file[:-(len(ext)+1)]+'.npy'
        path_srcfile = os.path.join(path_srcdir, file)
        path_unitsfile = os.path.join(path_unitsdir, binfile)
        path_f0file = os.path.join(path_f0dir, binfile)
        path_volumefile = os.path.join(path_volumedir, binfile)
        path_augvolfile = os.path.join(path_augvoldir, binfile)
        path_melfile = os.path.join(path_meldir, binfile)
        path_augmelfile = os.path.join(path_augmeldir, binfile)
        path_skipfile = os.path.join(path_skipdir, file)
        
        # load audio
        audio, _ = librosa.load(path_srcfile, sr=sample_rate)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio)
        audio_t = torch.from_numpy(audio).float().to(device)
        audio_t = audio_t.unsqueeze(0)
        
        # extract volume
        volume = volume_extractor.extract(audio)
        
        # extract mel and volume augmentaion
        if mel_extractor is not None:
            mel_t = mel_extractor.extract(audio_t, sample_rate)
            mel = mel_t.squeeze().to('cpu').numpy()
            
            max_amp = float(torch.max(torch.abs(audio_t))) + 1e-5
            max_shift = min(1, np.log10(1/max_amp))
            log10_vol_shift = random.uniform(-1, max_shift)
            if use_pitch_aug:
                keyshift = random.uniform(-5, 5)
            else:
                keyshift = 0
            
            aug_mel_t = mel_extractor.extract(audio_t * (10 ** log10_vol_shift), sample_rate, keyshift = keyshift)
            aug_mel = aug_mel_t.squeeze().to('cpu').numpy()
            aug_vol = volume_extractor.extract(audio * (10 ** log10_vol_shift))
            
        # units encode
        units_t = units_encoder.encode(audio_t, sample_rate, hop_size)
        units = units_t.squeeze().to('cpu').numpy()
        
        # extract f0
        f0 = f0_extractor.extract(audio, uv_interp = False)
        
        uv = f0 == 0
        if len(f0[~uv]) > 0:
            # interpolate the unvoiced f0
            f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])

            # save npy     
            os.makedirs(os.path.dirname(path_unitsfile), exist_ok=True)
            np.save(path_unitsfile, units)
            os.makedirs(os.path.dirname(path_f0file), exist_ok=True)
            np.save(path_f0file, f0)
            os.makedirs(os.path.dirname(path_volumefile), exist_ok=True)
            np.save(path_volumefile, volume)
            if mel_extractor is not None:
                pitch_aug_dict[file[:-(len(ext)+1)]] = keyshift
                os.makedirs(os.path.dirname(path_melfile), exist_ok=True)
                np.save(path_melfile, mel)
                os.makedirs(os.path.dirname(path_augmelfile), exist_ok=True)
                np.save(path_augmelfile, aug_mel)
                os.makedirs(os.path.dirname(path_augvolfile), exist_ok=True)
                np.save(path_augvolfile, aug_vol)
        else:
            print('\n[Error] F0 extraction failed: ' + path_srcfile)
            os.makedirs(os.path.dirname(path_skipfile), exist_ok=True)
            shutil.move(path_srcfile, os.path.dirname(path_skipfile))
            print('This file has been moved to ' + path_skipfile)
    print('Preprocess the audio clips in :', path_srcdir)
    
    # single process
    for file in tqdm(filelist, total=len(filelist)):
        process(file)
    
    if mel_extractor is not None:
        path_pitchaugdict = os.path.join(path, 'pitch_aug_dict.npy')
        np.save(path_pitchaugdict, pitch_aug_dict)
    # multi-process (have bugs)
    '''
    with concurrent.futures.ProcessPoolExecutor(max_workers=2) as executor:
        list(tqdm(executor.map(process, filelist), total=len(filelist)))
    '''
                
if __name__ == '__main__':
    # parse commands
    cmd = parse_args()

    device = cmd.device
    if device is None:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'

    # load config
    args = utils.load_config(cmd.config)
    sample_rate = args.data.sampling_rate
    hop_size = args.data.block_size
    
    # initialize f0 extractor
    f0_extractor = F0_Extractor(
                        args.data.f0_extractor, 
                        args.data.sampling_rate, 
                        args.data.block_size, 
                        args.data.f0_min, 
                        args.data.f0_max)
    
    # initialize volume extractor
    volume_extractor = Volume_Extractor(args.data.block_size)
    
    # initialize mel extractor
    mel_extractor = None
    use_pitch_aug = False
    if args.model.type == 'Diffusion':
        mel_extractor = Vocoder(args.vocoder.type, args.vocoder.ckpt, device = device)
        if mel_extractor.vocoder_sample_rate != sample_rate or mel_extractor.vocoder_hop_size != hop_size:
            mel_extractor = None
            print('Unmatch vocoder parameters, mel extraction is ignored!')
        elif args.model.use_pitch_aug:
            use_pitch_aug = True
    
    # initialize units encoder
    if args.data.encoder == 'cnhubertsoftfish':
        cnhubertsoft_gate = args.data.cnhubertsoft_gate
    else:
        cnhubertsoft_gate = 10
    units_encoder = Units_Encoder(
                        args.data.encoder, 
                        args.data.encoder_ckpt, 
                        args.data.encoder_sample_rate, 
                        args.data.encoder_hop_size,
                        cnhubertsoft_gate=cnhubertsoft_gate,
                        device = device)    
    
    # preprocess training set
    preprocess(args.data.train_path, f0_extractor, volume_extractor, mel_extractor, units_encoder, sample_rate, hop_size, device = device, use_pitch_aug = use_pitch_aug)
    
    # preprocess validation set
    preprocess(args.data.valid_path, f0_extractor, volume_extractor, mel_extractor, units_encoder, sample_rate, hop_size, device = device, use_pitch_aug = False)