File size: 2,937 Bytes
85a7d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import argparse
import torch

from logger import utils
from data_loaders import get_data_loaders
from solver import train
from ddsp.vocoder import Sins, CombSub, CombSubFast
from ddsp.loss import RSSLoss


def parse_args(args=None, namespace=None):
    """Parse command-line arguments."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c",
        "--config",
        type=str,
        required=True,
        help="path to the config file")
    return parser.parse_args(args=args, namespace=namespace)


if __name__ == '__main__':
    # parse commands
    cmd = parse_args()
    
    # load config
    args = utils.load_config(cmd.config)
    print(' > config:', cmd.config)
    print(' >    exp:', args.env.expdir)

    # load model
    model = None
    
    if args.model.type == 'Sins':
        model = Sins(
            sampling_rate=args.data.sampling_rate,
            block_size=args.data.block_size,
            n_harmonics=args.model.n_harmonics,
            n_mag_allpass=args.model.n_mag_allpass,
            n_mag_noise=args.model.n_mag_noise,
            n_unit=args.data.encoder_out_channels,
            n_spk=args.model.n_spk)
 
    elif args.model.type == 'CombSub':
        model = CombSub(
            sampling_rate=args.data.sampling_rate,
            block_size=args.data.block_size,
            n_mag_allpass=args.model.n_mag_allpass,
            n_mag_harmonic=args.model.n_mag_harmonic,
            n_mag_noise=args.model.n_mag_noise,
            n_unit=args.data.encoder_out_channels,
            n_spk=args.model.n_spk)
    
    elif args.model.type == 'CombSubFast':
        model = CombSubFast(
            sampling_rate=args.data.sampling_rate,
            block_size=args.data.block_size,
            n_unit=args.data.encoder_out_channels,
            n_spk=args.model.n_spk)
            
    else:
        raise ValueError(f" [x] Unknown Model: {args.model.type}")
    
    # load parameters
    optimizer = torch.optim.AdamW(model.parameters())
    initial_global_step, model, optimizer = utils.load_model(args.env.expdir, model, optimizer, device=args.device)
    for param_group in optimizer.param_groups:
        param_group['lr'] = args.train.lr
        param_group['weight_decay'] = args.train.weight_decay
        
    # loss
    loss_func = RSSLoss(args.loss.fft_min, args.loss.fft_max, args.loss.n_scale, device = args.device)

    # device
    if args.device == 'cuda':
        torch.cuda.set_device(args.env.gpu_id)
    model.to(args.device)
    
    for state in optimizer.state.values():
        for k, v in state.items():
            if torch.is_tensor(v):
                state[k] = v.to(args.device)
                    
    loss_func.to(args.device)

    # datas
    loader_train, loader_valid = get_data_loaders(args, whole_audio=False)
    
    # run
    train(args, initial_global_step, model, optimizer, loss_func, loader_train, loader_valid)