File size: 22,935 Bytes
85a7d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import PySimpleGUI as sg
import sounddevice as sd
import torch, librosa, threading, pickle
from enhancer import Enhancer
import numpy as np
from torch.nn import functional as F
from torchaudio.transforms import Resample
from ddsp.vocoder import load_model, F0_Extractor, Volume_Extractor, Units_Encoder
from ddsp.core import upsample
import time
import gui_locale


def phase_vocoder(a, b, fade_out, fade_in):
    fa = torch.fft.rfft(a)
    fb = torch.fft.rfft(b)
    absab = torch.abs(fa) + torch.abs(fb)
    n = a.shape[0]
    if n % 2 == 0:
        absab[1:-1] *= 2
    else:
        absab[1:] *= 2
    phia = torch.angle(fa)
    phib = torch.angle(fb)
    deltaphase = phib - phia
    deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
    w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
    t = torch.arange(n).unsqueeze(-1).to(a) / n
    result = a * (fade_out ** 2) + b * (fade_in ** 2) + torch.sum(absab * torch.cos(w * t + phia),
                                                                  -1) * fade_out * fade_in / n
    return result


class SvcDDSP:
    def __init__(self) -> None:
        self.model = None
        self.units_encoder = None
        self.encoder_type = None
        self.encoder_ckpt = None
        self.enhancer = None
        self.enhancer_type = None
        self.enhancer_ckpt = None

    def update_model(self, model_path):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'

        # load ddsp model
        if self.model is None or self.model_path != model_path:
            self.model, self.args = load_model(model_path, device=self.device)
            self.model_path = model_path

            # load units encoder
            if self.units_encoder is None or self.args.data.encoder != self.encoder_type or self.args.data.encoder_ckpt != self.encoder_ckpt:
                if self.args.data.encoder == 'cnhubertsoftfish':
                    cnhubertsoft_gate = self.args.data.cnhubertsoft_gate
                else:
                    cnhubertsoft_gate = 10
                self.units_encoder = Units_Encoder(
                    self.args.data.encoder,
                    self.args.data.encoder_ckpt,
                    self.args.data.encoder_sample_rate,
                    self.args.data.encoder_hop_size,
                    cnhubertsoft_gate=cnhubertsoft_gate,
                    device=self.device)
                self.encoder_type = self.args.data.encoder
                self.encoder_ckpt = self.args.data.encoder_ckpt

        # load enhancer
        if self.enhancer is None or self.args.enhancer.type != self.enhancer_type or self.args.enhancer.ckpt != self.enhancer_ckpt:
            self.enhancer = Enhancer(self.args.enhancer.type, self.args.enhancer.ckpt, device=self.device)
            self.enhancer_type = self.args.enhancer.type
            self.enhancer_ckpt = self.args.enhancer.ckpt

    def infer(self,
              audio,
              sample_rate,
              spk_id=1,
              threhold=-45,
              pitch_adjust=0,
              use_spk_mix=False,
              spk_mix_dict=None,
              use_enhancer=True,
              enhancer_adaptive_key='auto',
              pitch_extractor_type='crepe',
              f0_min=50,
              f0_max=1100,
              safe_prefix_pad_length=0,
              ):
        print("Infering...")
        # load input
        # audio, sample_rate = librosa.load(input_wav, sr=None, mono=True)
        hop_size = self.args.data.block_size * sample_rate / self.args.data.sampling_rate
        # safe front silence
        if safe_prefix_pad_length > 0.03:
            silence_front = safe_prefix_pad_length - 0.03
        else:
            silence_front = 0

        # extract f0
        pitch_extractor = F0_Extractor(
            pitch_extractor_type,
            sample_rate,
            hop_size,
            float(f0_min),
            float(f0_max))
        f0 = pitch_extractor.extract(audio, uv_interp=True, device=self.device, silence_front=silence_front)
        f0 = torch.from_numpy(f0).float().to(self.device).unsqueeze(-1).unsqueeze(0)
        f0 = f0 * 2 ** (float(pitch_adjust) / 12)

        # extract volume
        volume_extractor = Volume_Extractor(hop_size)
        volume = volume_extractor.extract(audio)
        mask = (volume > 10 ** (float(threhold) / 20)).astype('float')
        mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
        mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
        mask = torch.from_numpy(mask).float().to(self.device).unsqueeze(-1).unsqueeze(0)
        mask = upsample(mask, self.args.data.block_size).squeeze(-1)
        volume = torch.from_numpy(volume).float().to(self.device).unsqueeze(-1).unsqueeze(0)

        # extract units
        audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
        units = self.units_encoder.encode(audio_t, sample_rate, hop_size)

        # spk_id or spk_mix_dict
        spk_id = torch.LongTensor(np.array([[spk_id]])).to(self.device)
        dictionary = None
        if use_spk_mix:
            dictionary = spk_mix_dict

            # forward and return the output
        with torch.no_grad():
            output, _, (s_h, s_n) = self.model(units, f0, volume, spk_id=spk_id, spk_mix_dict=dictionary)
            output *= mask
            if use_enhancer:
                output, output_sample_rate = self.enhancer.enhance(
                    output,
                    self.args.data.sampling_rate,
                    f0,
                    self.args.data.block_size,
                    adaptive_key=enhancer_adaptive_key,
                    silence_front=silence_front)
            else:
                output_sample_rate = self.args.data.sampling_rate

            output = output.squeeze()
            return output, output_sample_rate


class Config:
    def __init__(self) -> None:
        self.samplerate = 44100  # Hz
        self.block_time = 1.5  # s
        self.f_pitch_change: float = 0.0  # float(request_form.get("fPitchChange", 0))
        self.spk_id = 1  # 默认说话人。
        self.spk_mix_dict = None  # {1:0.5, 2:0.5} 表示1号说话人和2号说话人的音色按照0.5:0.5的比例混合
        self.use_vocoder_based_enhancer = True
        self.use_phase_vocoder = True
        self.checkpoint_path = ''
        self.threhold = -35
        self.buffer_num = 2
        self.crossfade_time = 0.03
        self.select_pitch_extractor = 'harvest'  # F0预测器["parselmouth", "dio", "harvest", "crepe"]
        self.use_spk_mix = False
        self.sounddevices = ['', '']

    def save(self, path):
        with open(path + '\\config.pkl', 'wb') as f:
            pickle.dump(vars(self), f)

    def load(self, path) -> bool:
        try:
            with open(path + '\\config.pkl', 'rb') as f:
                self.update(pickle.load(f))
            return True
        except:
            print('config.pkl does not exist')
            return False
    
    def update(self, data_dict):
        for key, value in data_dict.items():
            setattr(self, key, value)


class GUI:
    def __init__(self) -> None:
        self.config = Config()
        self.flag_vc: bool = False  # 变声线程flag
        self.block_frame = 0
        self.crossfade_frame = 0
        self.sola_search_frame = 0
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.svc_model: SvcDDSP = SvcDDSP()
        self.fade_in_window: np.ndarray = None  # crossfade计算用numpy数组
        self.fade_out_window: np.ndarray = None  # crossfade计算用numpy数组
        self.input_wav: np.ndarray = None  # 输入音频规范化后的保存地址
        self.output_wav: np.ndarray = None  # 输出音频规范化后的保存地址
        self.sola_buffer: torch.Tensor = None  # 保存上一个output的crossfade
        self.f0_mode_list = ["parselmouth", "dio", "harvest", "crepe"]  # F0预测器
        self.f_safe_prefix_pad_length: float = 0.0
        self.resample_kernel = {}
        self.launcher()  # start

    def launcher(self):
        '''窗口加载'''
        input_devices, output_devices, _, _ = self.get_devices()
        sg.theme('DarkAmber')  # 设置主题
        # 界面布局
        layout = [
            [sg.Frame(layout=[
                [sg.Input(key='sg_model', default_text='exp\\multi_speaker\\model_300000.pt'),
                 sg.FileBrowse(i18n('选择模型文件'), key='choose_model')]
            ], title=i18n('模型:.pt格式(自动识别同目录下config.yaml)')),
                sg.Frame(layout=[
                    [sg.Text(i18n('选择配置文件所在目录')), sg.Input(key='config_file_dir', default_text='exp'),
                     sg.FolderBrowse(i18n('打开文件夹'), key='choose_config')],
                    [sg.Button(i18n('读取配置文件'), key='load_config'), sg.Button(i18n('保存配置文件'), key='save_config')]
                ], title=i18n('快速配置文件'))
            ],
            [sg.Frame(layout=[
                [sg.Text(i18n("输入设备")),
                 sg.Combo(input_devices, key='sg_input_device', default_value=input_devices[sd.default.device[0]],
                          enable_events=True)],
                [sg.Text(i18n("输出设备")),
                 sg.Combo(output_devices, key='sg_output_device', default_value=output_devices[sd.default.device[1]],
                          enable_events=True)]
            ], title=i18n('音频设备'))
            ],
            [sg.Frame(layout=[
                [sg.Text(i18n("说话人id")), sg.Input(key='spk_id', default_text='1')],
                [sg.Text(i18n("响应阈值")),
                 sg.Slider(range=(-60, 0), orientation='h', key='threhold', resolution=1, default_value=-45,
                           enable_events=True)],
                [sg.Text(i18n("变调")),
                 sg.Slider(range=(-24, 24), orientation='h', key='pitch', resolution=1, default_value=0,
                           enable_events=True)],
                [sg.Text(i18n("采样率")), sg.Input(key='samplerate', default_text='44100')],
                [sg.Checkbox(text=i18n('启用捏音色功能'), default=False, key='spk_mix', enable_events=True),
                 sg.Button(i18n("设置混合音色"), key='set_spk_mix')]
            ], title=i18n('普通设置')),
                sg.Frame(layout=[
                    [sg.Text(i18n("音频切分大小")),
                     sg.Slider(range=(0.05, 3.0), orientation='h', key='block', resolution=0.01, default_value=0.3,
                               enable_events=True)],
                    [sg.Text(i18n("交叉淡化时长")),
                     sg.Slider(range=(0.01, 0.15), orientation='h', key='crossfade', resolution=0.01,
                               default_value=0.04, enable_events=True)],
                    [sg.Text(i18n("使用历史区块数量")),
                     sg.Slider(range=(1, 20), orientation='h', key='buffernum', resolution=1, default_value=4,
                               enable_events=True)],
                    [sg.Text(i18n("f0预测模式")),
                     sg.Combo(values=self.f0_mode_list, key='f0_mode', default_value=self.f0_mode_list[2],
                              enable_events=True)],
                    [sg.Checkbox(text=i18n('启用增强器'), default=True, key='use_enhancer', enable_events=True),
                     sg.Checkbox(text=i18n('启用相位声码器'), default=False, key='use_phase_vocoder', enable_events=True)]
                ], title=i18n('性能设置')),
            ],
            [sg.Button(i18n("开始音频转换"), key="start_vc"), sg.Button(i18n("停止音频转换"), key="stop_vc"),
             sg.Text(i18n('推理所用时间(ms):')), sg.Text('0', key='infer_time')]
        ]

        # 创造窗口
        self.window = sg.Window('DDSP - GUI', layout, finalize=True)
        self.window['spk_id'].bind('<Return>', '')
        self.window['samplerate'].bind('<Return>', '')
        self.event_handler()

    def event_handler(self):
        '''事件处理'''
        while True:  # 事件处理循环
            event, values = self.window.read()
            print('event: ' + event)
            if event == sg.WINDOW_CLOSED:  # 如果用户关闭窗口
                self.flag_vc = False
                exit()
            elif event == 'start_vc' and self.flag_vc == False:
                # set values 和界面布局layout顺序一一对应
                self.set_values(values)
                print('crossfade_time:' + str(self.config.crossfade_time))
                print("buffer_num:" + str(self.config.buffer_num))
                print("samplerate:" + str(self.config.samplerate))
                print('block_time:' + str(self.config.block_time))
                print("prefix_pad_length:" + str(self.f_safe_prefix_pad_length))
                print("mix_mode:" + str(self.config.spk_mix_dict))
                print("enhancer:" + str(self.config.use_vocoder_based_enhancer))
                print('using_cuda:' + str(torch.cuda.is_available()))
                self.start_vc()
            elif event == 'spk_id':
                self.config.spk_id = int(values['spk_id'])
            elif event == 'threhold':
                self.config.threhold = values['threhold']
            elif event == 'pitch':
                self.config.f_pitch_change = values['pitch']
            elif event == 'spk_mix':
                self.config.use_spk_mix = values['spk_mix']
            elif event == 'set_spk_mix':
                spk_mix = sg.popup_get_text(message='示例:1:0.3,2:0.5,3:0.2', title="设置混合音色,支持多人")
                if spk_mix != None:
                    self.config.spk_mix_dict = eval("{" + spk_mix.replace(',', ',').replace(':', ':') + "}")
            elif event == 'f0_mode':
                self.config.select_pitch_extractor = values['f0_mode']
            elif event == 'use_enhancer':
                self.config.use_vocoder_based_enhancer = values['use_enhancer']
            elif event == 'use_phase_vocoder':
                self.config.use_phase_vocoder = values['use_phase_vocoder']
            elif event == 'load_config' and self.flag_vc == False:
                if self.config.load(values['config_file_dir']):
                    self.update_values()
            elif event == 'save_config' and self.flag_vc == False:
                self.set_values(values)
                self.config.save(values['config_file_dir'])
            elif event != 'start_vc' and self.flag_vc == True:
                self.flag_vc = False

    def set_values(self, values):
        self.set_devices(values["sg_input_device"], values['sg_output_device'])
        self.config.sounddevices = [values["sg_input_device"], values['sg_output_device']]
        self.config.checkpoint_path = values['sg_model']
        self.config.spk_id = int(values['spk_id'])
        self.config.threhold = values['threhold']
        self.config.f_pitch_change = values['pitch']
        self.config.samplerate = int(values['samplerate'])
        self.config.block_time = float(values['block'])
        self.config.crossfade_time = float(values['crossfade'])
        self.config.buffer_num = int(values['buffernum'])
        self.config.select_pitch_extractor = values['f0_mode']
        self.config.use_vocoder_based_enhancer = values['use_enhancer']
        self.config.use_phase_vocoder = values['use_phase_vocoder']
        self.config.use_spk_mix = values['spk_mix']
        self.block_frame = int(self.config.block_time * self.config.samplerate)
        self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
        self.sola_search_frame = int(0.01 * self.config.samplerate)
        self.last_delay_frame = int(0.02 * self.config.samplerate)
        self.input_frames = max(
            self.block_frame + self.crossfade_frame + self.sola_search_frame + 2 * self.last_delay_frame,
            (1 + self.config.buffer_num) * self.block_frame)
        self.f_safe_prefix_pad_length = self.config.block_time * self.config.buffer_num - self.config.crossfade_time - 0.01 - 0.02

    def update_values(self):
        self.window['sg_model'].update(self.config.checkpoint_path)
        self.window['sg_input_device'].update(self.config.sounddevices[0])
        self.window['sg_output_device'].update(self.config.sounddevices[1])
        self.window['spk_id'].update(self.config.spk_id)
        self.window['threhold'].update(self.config.threhold)
        self.window['pitch'].update(self.config.f_pitch_change)
        self.window['samplerate'].update(self.config.samplerate)
        self.window['spk_mix'].update(self.config.use_spk_mix)
        self.window['block'].update(self.config.block_time)
        self.window['crossfade'].update(self.config.crossfade_time)
        self.window['buffernum'].update(self.config.buffer_num)
        self.window['f0_mode'].update(self.config.select_pitch_extractor)
        self.window['use_enhancer'].update(self.config.use_vocoder_based_enhancer)

    def start_vc(self):
        '''开始音频转换'''
        torch.cuda.empty_cache()
        self.flag_vc = True
        self.input_wav = np.zeros(self.input_frames, dtype='float32')
        self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.device)
        self.fade_in_window = torch.sin(
            np.pi * torch.arange(0, 1, 1 / self.crossfade_frame, device=self.device) / 2) ** 2
        self.fade_out_window = 1 - self.fade_in_window
        self.svc_model.update_model(self.config.checkpoint_path)
        thread_vc = threading.Thread(target=self.soundinput)
        thread_vc.start()

    def soundinput(self):
        '''
        接受音频输入
        '''
        with sd.Stream(callback=self.audio_callback, blocksize=self.block_frame, samplerate=self.config.samplerate,
                       dtype='float32'):
            while self.flag_vc:
                time.sleep(self.config.block_time)
                print('Audio block passed.')
        print('ENDing VC')

    def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
        '''
        音频处理
        '''
        start_time = time.perf_counter()
        print("\nStarting callback")
        self.input_wav[:] = np.roll(self.input_wav, -self.block_frame)
        self.input_wav[-self.block_frame:] = librosa.to_mono(indata.T)

        # infer
        _audio, _model_sr = self.svc_model.infer(
            self.input_wav,
            self.config.samplerate,
            spk_id=self.config.spk_id,
            threhold=self.config.threhold,
            pitch_adjust=self.config.f_pitch_change,
            use_spk_mix=self.config.use_spk_mix,
            spk_mix_dict=self.config.spk_mix_dict,
            use_enhancer=self.config.use_vocoder_based_enhancer,
            pitch_extractor_type=self.config.select_pitch_extractor,
            safe_prefix_pad_length=self.f_safe_prefix_pad_length,
        )

        # debug sola
        '''
        _audio, _model_sr = self.input_wav, self.config.samplerate
        rs = int(np.random.uniform(-200,200))
        print('debug_random_shift: ' + str(rs))
        _audio = np.roll(_audio, rs)
        _audio = torch.from_numpy(_audio).to(self.device)
        '''

        if _model_sr != self.config.samplerate:
            key_str = str(_model_sr) + '_' + str(self.config.samplerate)
            if key_str not in self.resample_kernel:
                self.resample_kernel[key_str] = Resample(_model_sr, self.config.samplerate,
                                                         lowpass_filter_width=128).to(self.device)
            _audio = self.resample_kernel[key_str](_audio)
        temp_wav = _audio[
                   - self.block_frame - self.crossfade_frame - self.sola_search_frame - self.last_delay_frame: - self.last_delay_frame]

        # sola shift
        conv_input = temp_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
        cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
        cor_den = torch.sqrt(
            F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=self.device)) + 1e-8)
        sola_shift = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
        temp_wav = temp_wav[sola_shift: sola_shift + self.block_frame + self.crossfade_frame]
        print('sola_shift: ' + str(int(sola_shift)))

        # phase vocoder
        if self.config.use_phase_vocoder:
            temp_wav[: self.crossfade_frame] = phase_vocoder(
                self.sola_buffer,
                temp_wav[: self.crossfade_frame],
                self.fade_out_window,
                self.fade_in_window)
        else:
            temp_wav[: self.crossfade_frame] *= self.fade_in_window
            temp_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window

        self.sola_buffer = temp_wav[- self.crossfade_frame:]

        outdata[:] = temp_wav[: - self.crossfade_frame, None].repeat(1, 2).cpu().numpy()
        end_time = time.perf_counter()
        print('infer_time: ' + str(end_time - start_time))
        self.window['infer_time'].update(int((end_time - start_time) * 1000))

    def get_devices(self, update: bool = True):
        '''获取设备列表'''
        if update:
            sd._terminate()
            sd._initialize()
        devices = sd.query_devices()
        hostapis = sd.query_hostapis()
        for hostapi in hostapis:
            for device_idx in hostapi["devices"]:
                devices[device_idx]["hostapi_name"] = hostapi["name"]
        input_devices = [
            f"{d['name']} ({d['hostapi_name']})"
            for d in devices
            if d["max_input_channels"] > 0
        ]
        output_devices = [
            f"{d['name']} ({d['hostapi_name']})"
            for d in devices
            if d["max_output_channels"] > 0
        ]
        input_devices_indices = [d["index"] for d in devices if d["max_input_channels"] > 0]
        output_devices_indices = [
            d["index"] for d in devices if d["max_output_channels"] > 0
        ]
        return input_devices, output_devices, input_devices_indices, output_devices_indices

    def set_devices(self, input_device, output_device):
        '''设置输出设备'''
        input_devices, output_devices, input_device_indices, output_device_indices = self.get_devices()
        sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
        sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
        print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
        print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))



if __name__ == "__main__":
    i18n = gui_locale.I18nAuto()
    gui = GUI()