File size: 22,935 Bytes
85a7d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import PySimpleGUI as sg
import sounddevice as sd
import torch, librosa, threading, pickle
from enhancer import Enhancer
import numpy as np
from torch.nn import functional as F
from torchaudio.transforms import Resample
from ddsp.vocoder import load_model, F0_Extractor, Volume_Extractor, Units_Encoder
from ddsp.core import upsample
import time
import gui_locale
def phase_vocoder(a, b, fade_out, fade_in):
fa = torch.fft.rfft(a)
fb = torch.fft.rfft(b)
absab = torch.abs(fa) + torch.abs(fb)
n = a.shape[0]
if n % 2 == 0:
absab[1:-1] *= 2
else:
absab[1:] *= 2
phia = torch.angle(fa)
phib = torch.angle(fb)
deltaphase = phib - phia
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
t = torch.arange(n).unsqueeze(-1).to(a) / n
result = a * (fade_out ** 2) + b * (fade_in ** 2) + torch.sum(absab * torch.cos(w * t + phia),
-1) * fade_out * fade_in / n
return result
class SvcDDSP:
def __init__(self) -> None:
self.model = None
self.units_encoder = None
self.encoder_type = None
self.encoder_ckpt = None
self.enhancer = None
self.enhancer_type = None
self.enhancer_ckpt = None
def update_model(self, model_path):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load ddsp model
if self.model is None or self.model_path != model_path:
self.model, self.args = load_model(model_path, device=self.device)
self.model_path = model_path
# load units encoder
if self.units_encoder is None or self.args.data.encoder != self.encoder_type or self.args.data.encoder_ckpt != self.encoder_ckpt:
if self.args.data.encoder == 'cnhubertsoftfish':
cnhubertsoft_gate = self.args.data.cnhubertsoft_gate
else:
cnhubertsoft_gate = 10
self.units_encoder = Units_Encoder(
self.args.data.encoder,
self.args.data.encoder_ckpt,
self.args.data.encoder_sample_rate,
self.args.data.encoder_hop_size,
cnhubertsoft_gate=cnhubertsoft_gate,
device=self.device)
self.encoder_type = self.args.data.encoder
self.encoder_ckpt = self.args.data.encoder_ckpt
# load enhancer
if self.enhancer is None or self.args.enhancer.type != self.enhancer_type or self.args.enhancer.ckpt != self.enhancer_ckpt:
self.enhancer = Enhancer(self.args.enhancer.type, self.args.enhancer.ckpt, device=self.device)
self.enhancer_type = self.args.enhancer.type
self.enhancer_ckpt = self.args.enhancer.ckpt
def infer(self,
audio,
sample_rate,
spk_id=1,
threhold=-45,
pitch_adjust=0,
use_spk_mix=False,
spk_mix_dict=None,
use_enhancer=True,
enhancer_adaptive_key='auto',
pitch_extractor_type='crepe',
f0_min=50,
f0_max=1100,
safe_prefix_pad_length=0,
):
print("Infering...")
# load input
# audio, sample_rate = librosa.load(input_wav, sr=None, mono=True)
hop_size = self.args.data.block_size * sample_rate / self.args.data.sampling_rate
# safe front silence
if safe_prefix_pad_length > 0.03:
silence_front = safe_prefix_pad_length - 0.03
else:
silence_front = 0
# extract f0
pitch_extractor = F0_Extractor(
pitch_extractor_type,
sample_rate,
hop_size,
float(f0_min),
float(f0_max))
f0 = pitch_extractor.extract(audio, uv_interp=True, device=self.device, silence_front=silence_front)
f0 = torch.from_numpy(f0).float().to(self.device).unsqueeze(-1).unsqueeze(0)
f0 = f0 * 2 ** (float(pitch_adjust) / 12)
# extract volume
volume_extractor = Volume_Extractor(hop_size)
volume = volume_extractor.extract(audio)
mask = (volume > 10 ** (float(threhold) / 20)).astype('float')
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
mask = torch.from_numpy(mask).float().to(self.device).unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().to(self.device).unsqueeze(-1).unsqueeze(0)
# extract units
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
units = self.units_encoder.encode(audio_t, sample_rate, hop_size)
# spk_id or spk_mix_dict
spk_id = torch.LongTensor(np.array([[spk_id]])).to(self.device)
dictionary = None
if use_spk_mix:
dictionary = spk_mix_dict
# forward and return the output
with torch.no_grad():
output, _, (s_h, s_n) = self.model(units, f0, volume, spk_id=spk_id, spk_mix_dict=dictionary)
output *= mask
if use_enhancer:
output, output_sample_rate = self.enhancer.enhance(
output,
self.args.data.sampling_rate,
f0,
self.args.data.block_size,
adaptive_key=enhancer_adaptive_key,
silence_front=silence_front)
else:
output_sample_rate = self.args.data.sampling_rate
output = output.squeeze()
return output, output_sample_rate
class Config:
def __init__(self) -> None:
self.samplerate = 44100 # Hz
self.block_time = 1.5 # s
self.f_pitch_change: float = 0.0 # float(request_form.get("fPitchChange", 0))
self.spk_id = 1 # 默认说话人。
self.spk_mix_dict = None # {1:0.5, 2:0.5} 表示1号说话人和2号说话人的音色按照0.5:0.5的比例混合
self.use_vocoder_based_enhancer = True
self.use_phase_vocoder = True
self.checkpoint_path = ''
self.threhold = -35
self.buffer_num = 2
self.crossfade_time = 0.03
self.select_pitch_extractor = 'harvest' # F0预测器["parselmouth", "dio", "harvest", "crepe"]
self.use_spk_mix = False
self.sounddevices = ['', '']
def save(self, path):
with open(path + '\\config.pkl', 'wb') as f:
pickle.dump(vars(self), f)
def load(self, path) -> bool:
try:
with open(path + '\\config.pkl', 'rb') as f:
self.update(pickle.load(f))
return True
except:
print('config.pkl does not exist')
return False
def update(self, data_dict):
for key, value in data_dict.items():
setattr(self, key, value)
class GUI:
def __init__(self) -> None:
self.config = Config()
self.flag_vc: bool = False # 变声线程flag
self.block_frame = 0
self.crossfade_frame = 0
self.sola_search_frame = 0
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.svc_model: SvcDDSP = SvcDDSP()
self.fade_in_window: np.ndarray = None # crossfade计算用numpy数组
self.fade_out_window: np.ndarray = None # crossfade计算用numpy数组
self.input_wav: np.ndarray = None # 输入音频规范化后的保存地址
self.output_wav: np.ndarray = None # 输出音频规范化后的保存地址
self.sola_buffer: torch.Tensor = None # 保存上一个output的crossfade
self.f0_mode_list = ["parselmouth", "dio", "harvest", "crepe"] # F0预测器
self.f_safe_prefix_pad_length: float = 0.0
self.resample_kernel = {}
self.launcher() # start
def launcher(self):
'''窗口加载'''
input_devices, output_devices, _, _ = self.get_devices()
sg.theme('DarkAmber') # 设置主题
# 界面布局
layout = [
[sg.Frame(layout=[
[sg.Input(key='sg_model', default_text='exp\\multi_speaker\\model_300000.pt'),
sg.FileBrowse(i18n('选择模型文件'), key='choose_model')]
], title=i18n('模型:.pt格式(自动识别同目录下config.yaml)')),
sg.Frame(layout=[
[sg.Text(i18n('选择配置文件所在目录')), sg.Input(key='config_file_dir', default_text='exp'),
sg.FolderBrowse(i18n('打开文件夹'), key='choose_config')],
[sg.Button(i18n('读取配置文件'), key='load_config'), sg.Button(i18n('保存配置文件'), key='save_config')]
], title=i18n('快速配置文件'))
],
[sg.Frame(layout=[
[sg.Text(i18n("输入设备")),
sg.Combo(input_devices, key='sg_input_device', default_value=input_devices[sd.default.device[0]],
enable_events=True)],
[sg.Text(i18n("输出设备")),
sg.Combo(output_devices, key='sg_output_device', default_value=output_devices[sd.default.device[1]],
enable_events=True)]
], title=i18n('音频设备'))
],
[sg.Frame(layout=[
[sg.Text(i18n("说话人id")), sg.Input(key='spk_id', default_text='1')],
[sg.Text(i18n("响应阈值")),
sg.Slider(range=(-60, 0), orientation='h', key='threhold', resolution=1, default_value=-45,
enable_events=True)],
[sg.Text(i18n("变调")),
sg.Slider(range=(-24, 24), orientation='h', key='pitch', resolution=1, default_value=0,
enable_events=True)],
[sg.Text(i18n("采样率")), sg.Input(key='samplerate', default_text='44100')],
[sg.Checkbox(text=i18n('启用捏音色功能'), default=False, key='spk_mix', enable_events=True),
sg.Button(i18n("设置混合音色"), key='set_spk_mix')]
], title=i18n('普通设置')),
sg.Frame(layout=[
[sg.Text(i18n("音频切分大小")),
sg.Slider(range=(0.05, 3.0), orientation='h', key='block', resolution=0.01, default_value=0.3,
enable_events=True)],
[sg.Text(i18n("交叉淡化时长")),
sg.Slider(range=(0.01, 0.15), orientation='h', key='crossfade', resolution=0.01,
default_value=0.04, enable_events=True)],
[sg.Text(i18n("使用历史区块数量")),
sg.Slider(range=(1, 20), orientation='h', key='buffernum', resolution=1, default_value=4,
enable_events=True)],
[sg.Text(i18n("f0预测模式")),
sg.Combo(values=self.f0_mode_list, key='f0_mode', default_value=self.f0_mode_list[2],
enable_events=True)],
[sg.Checkbox(text=i18n('启用增强器'), default=True, key='use_enhancer', enable_events=True),
sg.Checkbox(text=i18n('启用相位声码器'), default=False, key='use_phase_vocoder', enable_events=True)]
], title=i18n('性能设置')),
],
[sg.Button(i18n("开始音频转换"), key="start_vc"), sg.Button(i18n("停止音频转换"), key="stop_vc"),
sg.Text(i18n('推理所用时间(ms):')), sg.Text('0', key='infer_time')]
]
# 创造窗口
self.window = sg.Window('DDSP - GUI', layout, finalize=True)
self.window['spk_id'].bind('<Return>', '')
self.window['samplerate'].bind('<Return>', '')
self.event_handler()
def event_handler(self):
'''事件处理'''
while True: # 事件处理循环
event, values = self.window.read()
print('event: ' + event)
if event == sg.WINDOW_CLOSED: # 如果用户关闭窗口
self.flag_vc = False
exit()
elif event == 'start_vc' and self.flag_vc == False:
# set values 和界面布局layout顺序一一对应
self.set_values(values)
print('crossfade_time:' + str(self.config.crossfade_time))
print("buffer_num:" + str(self.config.buffer_num))
print("samplerate:" + str(self.config.samplerate))
print('block_time:' + str(self.config.block_time))
print("prefix_pad_length:" + str(self.f_safe_prefix_pad_length))
print("mix_mode:" + str(self.config.spk_mix_dict))
print("enhancer:" + str(self.config.use_vocoder_based_enhancer))
print('using_cuda:' + str(torch.cuda.is_available()))
self.start_vc()
elif event == 'spk_id':
self.config.spk_id = int(values['spk_id'])
elif event == 'threhold':
self.config.threhold = values['threhold']
elif event == 'pitch':
self.config.f_pitch_change = values['pitch']
elif event == 'spk_mix':
self.config.use_spk_mix = values['spk_mix']
elif event == 'set_spk_mix':
spk_mix = sg.popup_get_text(message='示例:1:0.3,2:0.5,3:0.2', title="设置混合音色,支持多人")
if spk_mix != None:
self.config.spk_mix_dict = eval("{" + spk_mix.replace(',', ',').replace(':', ':') + "}")
elif event == 'f0_mode':
self.config.select_pitch_extractor = values['f0_mode']
elif event == 'use_enhancer':
self.config.use_vocoder_based_enhancer = values['use_enhancer']
elif event == 'use_phase_vocoder':
self.config.use_phase_vocoder = values['use_phase_vocoder']
elif event == 'load_config' and self.flag_vc == False:
if self.config.load(values['config_file_dir']):
self.update_values()
elif event == 'save_config' and self.flag_vc == False:
self.set_values(values)
self.config.save(values['config_file_dir'])
elif event != 'start_vc' and self.flag_vc == True:
self.flag_vc = False
def set_values(self, values):
self.set_devices(values["sg_input_device"], values['sg_output_device'])
self.config.sounddevices = [values["sg_input_device"], values['sg_output_device']]
self.config.checkpoint_path = values['sg_model']
self.config.spk_id = int(values['spk_id'])
self.config.threhold = values['threhold']
self.config.f_pitch_change = values['pitch']
self.config.samplerate = int(values['samplerate'])
self.config.block_time = float(values['block'])
self.config.crossfade_time = float(values['crossfade'])
self.config.buffer_num = int(values['buffernum'])
self.config.select_pitch_extractor = values['f0_mode']
self.config.use_vocoder_based_enhancer = values['use_enhancer']
self.config.use_phase_vocoder = values['use_phase_vocoder']
self.config.use_spk_mix = values['spk_mix']
self.block_frame = int(self.config.block_time * self.config.samplerate)
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
self.sola_search_frame = int(0.01 * self.config.samplerate)
self.last_delay_frame = int(0.02 * self.config.samplerate)
self.input_frames = max(
self.block_frame + self.crossfade_frame + self.sola_search_frame + 2 * self.last_delay_frame,
(1 + self.config.buffer_num) * self.block_frame)
self.f_safe_prefix_pad_length = self.config.block_time * self.config.buffer_num - self.config.crossfade_time - 0.01 - 0.02
def update_values(self):
self.window['sg_model'].update(self.config.checkpoint_path)
self.window['sg_input_device'].update(self.config.sounddevices[0])
self.window['sg_output_device'].update(self.config.sounddevices[1])
self.window['spk_id'].update(self.config.spk_id)
self.window['threhold'].update(self.config.threhold)
self.window['pitch'].update(self.config.f_pitch_change)
self.window['samplerate'].update(self.config.samplerate)
self.window['spk_mix'].update(self.config.use_spk_mix)
self.window['block'].update(self.config.block_time)
self.window['crossfade'].update(self.config.crossfade_time)
self.window['buffernum'].update(self.config.buffer_num)
self.window['f0_mode'].update(self.config.select_pitch_extractor)
self.window['use_enhancer'].update(self.config.use_vocoder_based_enhancer)
def start_vc(self):
'''开始音频转换'''
torch.cuda.empty_cache()
self.flag_vc = True
self.input_wav = np.zeros(self.input_frames, dtype='float32')
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.device)
self.fade_in_window = torch.sin(
np.pi * torch.arange(0, 1, 1 / self.crossfade_frame, device=self.device) / 2) ** 2
self.fade_out_window = 1 - self.fade_in_window
self.svc_model.update_model(self.config.checkpoint_path)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
'''
接受音频输入
'''
with sd.Stream(callback=self.audio_callback, blocksize=self.block_frame, samplerate=self.config.samplerate,
dtype='float32'):
while self.flag_vc:
time.sleep(self.config.block_time)
print('Audio block passed.')
print('ENDing VC')
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
'''
音频处理
'''
start_time = time.perf_counter()
print("\nStarting callback")
self.input_wav[:] = np.roll(self.input_wav, -self.block_frame)
self.input_wav[-self.block_frame:] = librosa.to_mono(indata.T)
# infer
_audio, _model_sr = self.svc_model.infer(
self.input_wav,
self.config.samplerate,
spk_id=self.config.spk_id,
threhold=self.config.threhold,
pitch_adjust=self.config.f_pitch_change,
use_spk_mix=self.config.use_spk_mix,
spk_mix_dict=self.config.spk_mix_dict,
use_enhancer=self.config.use_vocoder_based_enhancer,
pitch_extractor_type=self.config.select_pitch_extractor,
safe_prefix_pad_length=self.f_safe_prefix_pad_length,
)
# debug sola
'''
_audio, _model_sr = self.input_wav, self.config.samplerate
rs = int(np.random.uniform(-200,200))
print('debug_random_shift: ' + str(rs))
_audio = np.roll(_audio, rs)
_audio = torch.from_numpy(_audio).to(self.device)
'''
if _model_sr != self.config.samplerate:
key_str = str(_model_sr) + '_' + str(self.config.samplerate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(_model_sr, self.config.samplerate,
lowpass_filter_width=128).to(self.device)
_audio = self.resample_kernel[key_str](_audio)
temp_wav = _audio[
- self.block_frame - self.crossfade_frame - self.sola_search_frame - self.last_delay_frame: - self.last_delay_frame]
# sola shift
conv_input = temp_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(
F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=self.device)) + 1e-8)
sola_shift = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
temp_wav = temp_wav[sola_shift: sola_shift + self.block_frame + self.crossfade_frame]
print('sola_shift: ' + str(int(sola_shift)))
# phase vocoder
if self.config.use_phase_vocoder:
temp_wav[: self.crossfade_frame] = phase_vocoder(
self.sola_buffer,
temp_wav[: self.crossfade_frame],
self.fade_out_window,
self.fade_in_window)
else:
temp_wav[: self.crossfade_frame] *= self.fade_in_window
temp_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
self.sola_buffer = temp_wav[- self.crossfade_frame:]
outdata[:] = temp_wav[: - self.crossfade_frame, None].repeat(1, 2).cpu().numpy()
end_time = time.perf_counter()
print('infer_time: ' + str(end_time - start_time))
self.window['infer_time'].update(int((end_time - start_time) * 1000))
def get_devices(self, update: bool = True):
'''获取设备列表'''
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [d["index"] for d in devices if d["max_input_channels"] > 0]
output_devices_indices = [
d["index"] for d in devices if d["max_output_channels"] > 0
]
return input_devices, output_devices, input_devices_indices, output_devices_indices
def set_devices(self, input_device, output_device):
'''设置输出设备'''
input_devices, output_devices, input_device_indices, output_device_indices = self.get_devices()
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
if __name__ == "__main__":
i18n = gui_locale.I18nAuto()
gui = GUI()
|